YOLO :YOU ONLY LOOK ONCE

YOLO是一种高效的目标检测模型,它通过一次性预测图像中所有物体的位置和类别,实现了端到端的检测。与R-CNN系列不同,YOLO不需要预先提取候选框,而是直接对整个图像进行处理。网络结构包括24个卷积层和2个全连接层,每个网格单元负责预测物体类别和边界框。损失函数考虑了位置、IOU和分类误差,用于模型训练的优化。
摘要由CSDN通过智能技术生成

目录

1、YOLO是什么

2、YOLO 的突破

3、YOLO的原理

1、YOLO是什么

YOLO(you only look once)是目标检测模型,即只需要浏览一次就可以识别图中物体的位置和类别。相较于Region-base检测模型,其不需要提前找到可能存在目标的区域。

2、YOLO 的突破

YOLO是一个end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。即YOLO的预测是基于整个图片的,并且会一次性输出所有检测到的信息,包括类别和位置。YOLO 与R-CNN系列最大的区别:

(1) R-CNN与Fast RCNN采用分离模块(独立于网络之外的selective search方法)先提取可能包含物体的候选框区域,Faster RCNN才用RPN代替selective search方法提取候选框区域。而YOLO 不需要预先提取候选框区域,直接针对整个图片进行物体检测。

(2) R-CNN 系列将检测分为两部分求解,分别为物体类别(分类问题),物体位置(回归问题)。而YOLO是将物体检测作为一个回归问题进行求解,输入图像经过一个推理,便能得到图像中所有物体的位置及其所属类别。

下图为R-CNN系列与YOLO对比:

图1  R-CNN系列与YOLO对比

3、YOLO的原理

3.1 YOLO网络结构

YOLO检测网络包括24个卷积层和2个全连接层,如下图所示。

图2 YOLO 网络结构图

        其中,卷积层用来提取图像特征,全连接层用来预测图像位置和类别概率值。其中,1*1卷积是为了跨通道信息整合。

 3.2 YOLO检测物体

YOLO首先将图片分割为  S*S个grid cell ,每个grid cell的大小都是相等的。若某个物体的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这个物体。

如下图所示,图中狗的中心点落在红色原点的格子内,所以这个格子负责预测图象中狗。

图 3  YOLO检测

具体实现:每个grid cell 都预测出B个bounding boxs,这个bounding boxs有5个量,分别是物体的中心位置(x,y)和它的高(h)和宽(w),以及预测的置信度(confidence)

在处理输入的图片的时候想让图片的大小任意,这一点对于卷积神经网络来说不难。但是,如果输出的位置坐标是一个任意的正实数,模型很可能在大小不同的物体上泛化能力有很大的差异。此时需要对数据进行归一化,让连续数据的值位于0和1之间。

对于x和y而言,由于物体的中心位置在grid中,所以通过让真实的x除以grid的宽度,让真实的y除以grid的高度进行归一化。

对于h和w而言,因为一个物体很可能远大于grid的大小,预测物体的高和宽很可能大于bounding boxs的高和宽,这样w除以bounding boxs的宽度,h除以bounding boxs的高度依旧不在0和1之间。所以通过让w除以整张图片的宽度,h除以整张图片的高度来进行归一化。

对于confidence,confidence反映当前bounding box是否包含物体以及物体位置的准确性。计算公式如下:

 其中,若grid cell中包含物体,则Pr(obj)为1;否则Pr(obj)为0。

每个gird cell不仅预测B个bounding boxs,还要负责预测这个cell中的物体是什么类别的。虽然一个cell有多个bounding boxes,但是只能识别出一个物体,因此每个cell需要预测物体的类别,而bounding box不需要。

 3.2 Loss函数

YOLO使用均方和误差作为loss函数来优化模型参数,即网络输出的S*S*(B*5 + C)维向量与真实图像对应的S*S*(B*5 + C)维向量的均方和误差。如下式所示。其中,coordError、iouErrorclassError分别代表预测数据与标定数据之间的box位置误差、IOU误差和分类误差。

YOLO对上式loss的计算进行了如下修正。

(1) 位置误差与IOU误差、分类误差对网络loss的贡献值是不同的,因此YOLO在计算loss时,使用\lambda =5修正coordError。

(2) 在计算IOU误差时,包含物体的格子与不包含物体的格子,二者的IOU误差对网络loss的贡献值是不同的。若采用相同的权值,那么不包含物体的格子的confidence值近似为0,变相放大了包含物体的格子的confidence误差在计算网络参数梯度时的影响。为解决这个问题,YOLO 对iouError进行修正。
(3) 对于相等的误差值,大物体误差对检测的影响应小于小物体误差对检测的影响。这是因为,相同的位置偏差占大物体的比例远小于同等偏差占小物体的比例。YOLO将物体大小的信息项(w和h)进行求平方根来改进这个问题。

综上所述,YOLO的LOSS如下式所示:

借鉴资料:

 YOLO详解 - 知乎

写给小白的YOLO介绍 - 知乎


 

YOLO (You Only Look Once) 物体检测算法中,配置文件通常采用YAML (YAML Ain't Markup Language) 格式,这种文件主要用于描述模型的结构、训练参数以及其他关键设置。以下是创建一个基本的YOLOv4训练配置文件示例: ```yaml model: # 模型类型(YOLOv3,YOLOv4等) type: yolov4 # 数据集信息 data: # 数据集路径 train_data: path_to_train_annotations.txt val_data: path_to_val_annotations.txt # 输入图像尺寸,可以调整为更大的值如608x608提高精度,但会增加计算量 input_size: [608, 608] # 训练设置 train: # 批次大小 batch_size: 32 # 学习率策略(如固定,步进衰减,余弦退火等) lr_policy: cosine # 迭代次数 max_iter: 100000 # 每多少个epoch保存一次模型 save_interval: 5 # 是否启用混合精度训练(可以减少内存需求) use_mixed_precision: true # 目标类别和标签 classes: names: ['class1', 'class2', ...] # 将你的类别名称替换在这里 # 其他可选配置,如优化器、损失函数等 optimizer: type: adam momentum: 0.937 weight_decay: 0.0005 loss: # 使用的损失函数 type: 'yolo' # 调整其他特定于YOLO的参数,如anchors、grid size等 yolo: anchors: [...] ... # 验证设置 val: # 验证间隔 eval_interval: 1000 # 输出文件名 output: model_path: output/yolov4.weights # 训练后的权重文件路径 log_path: logs # 训练日志保存位置 ``` 在实际操作中,你需要将上述配置中的`path_to_train_annotations.txt`、`path_to_val_annotations.txt`、类别名称以及其他的路径替换为你具体的项目目录。然后,你可以使用相应的YOLO训练工具(如Darknet的命令行工具或PyTorch版本的YOLO库)来读取这个配置文件进行训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值