德卡斯特里奥算法(De Casteljau’s Algorithm)绘制贝塞尔曲线

德卡斯特里奥算法是计算贝塞尔曲线上的点的有效方法,通过递归地在控制点间找到特定比例的点,最终得到曲线上的点。此算法避免了递归计算中的重复,可用于绘制贝塞尔曲线。
摘要由CSDN通过智能技术生成

引用:http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/de-casteljau.html

 

德卡斯特里奥算法可以计算贝塞尔曲线上的点C(u)u[0,1]。因此,通过给定一组u的值,便可以计算出贝塞尔曲线上的坐标序列,从而绘制出贝塞尔曲线。

德卡斯特里奥算法的基础就是在向量AB上选择一个点C,使得C分向量ABu:1-u(也就是∣AC:AB= u)。给定点AB的坐标以及uu[0,1])的值,点C的坐标便为:C = A + (B - A) * u = (1 - u) * A + B * u

       定义贝塞尔曲线的控制点Pi编号为0i,其中,0表示是第0次迭代。当第一、二、三……次迭代时,0将会被12

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值