bzoj 1413: [ZJOI2009]取石子游戏(博弈+DP)

1413: [ZJOI2009]取石子游戏

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 711   Solved: 470
[ Submit][ Status][ Discuss]

Description

在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排。游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子,可以将那一堆全部取掉,但不能不取,不能操作的人就输了。 Orez问:对于任意给出一个初始一个局面,是否存在先手必胜策略。

Input

文件的第一行为一个整数T,表示有 T组测试数据。对于每组测试数据,第一行为一个整数n,表示有n堆石子;第二行为n个整数ai,依次表示每堆石子的数目。

Output

对于每组测试数据仅输出一个整数0或1。其中1表示有先手必胜策略,0表示没有。

Sample Input

1
4
3 1 9 4

Sample Output

0


前提:

假设当前有n堆石子,你可以在这n堆石子左边再加一堆数量为x的石子使得先手必败,那么x只有一种取值

原因:假设在左边放x个石子和y个石子(x>y)先手都必败,那么先手把x个石子取成y个后哈哈懂了吧


这样就可以dp了

L[i][j]表示在石子区间[L, R]的左边加上L[i][j]个石子后先手必败

R[i][j]表示在石子区间[L, R]的右边加上R[i][j]个石子后先手必败

假设已知L[i][j-1], R[i][j-1], a[j],求L[i][j]

分情况讨论:

a[j]<L[i][j-1],a[j]<R[i][j-1]

L[i][j] = a[j],你取多少个石子,对面只要在另一侧和你取相同石子就好,因为你一定是先将其中一堆石子取完的那个,这个时候对面面对的一定不可能是必败态

R[i][j-1]<a[j]<=L[i][j-1]:

L[i][j] = a[j]-1,若a[j]-1==R[i][j-1],因为你不能将a[j]取到R,所以对面只要保证取完后两端石子相同即可,若a[j]-1>R[i][j-1],在你把左端石子取到R之前,对面在另一侧和你取相同数量的石子,这样状态一定会变为a[j]-1=R[i][j]的状态

③L[i][j-1]<=a[j]<R[i][j-1]:

L[I][j]==a[j]+1,和上面思路一样

④a[j]>L[i][j-1],a[j]>R[i][j-1]

L[i][j] = a[j],和①情况一样,你取多少个石子,对面只要在另一侧和你取相同石子就好,但有一种情况对面不这么做:你将石子取得剩下R[i][j]个时,对面将石子取得剩下R[i][j]+1个(也就是少取1个),这样就变成情况③了

⑤R[I][j]==a[j]

L[i][j] = 0,没什么可说的,你已经必败


初始化L[i][i] = R[i][i] = a[i]因为只有两堆时若两堆数量相等则必败

最后判断下L[2][n]是否等于a[1]

#include<stdio.h>
#include<string.h>
int n, a[1005], l[1005][1005], r[1005][1005];
int main(void)
{
	int T, i, j, k;
	scanf("%d", &T);
	while(T--)
	{
		scanf("%d", &n);
		if(n==1)
			printf("1\n");
		else
		{
			for(i=1;i<=n;i++)
				scanf("%d", &a[i]);
			memset(l, -1, sizeof(l));
			memset(r, -1, sizeof(r));
			for(i=1;i<=n;i++)
				l[i][i] = r[i][i] = a[i];
			for(i=1;i<=n-1;i++)
			{
				for(j=1;j+i<=n;j++)
				{
					k = j+i;
					if(r[j][k-1]==a[k])  l[j][k] = 0;
					else if(a[k]<r[j][k-1] && a[k]<l[j][k-1] || a[k]>r[j][k-1] && a[k]>l[j][k-1])  l[j][k] = a[k];
					else if(r[j][k-1]<l[j][k-1])  l[j][k] = a[k]-1;
					else  l[j][k] = a[k]+1;
					if(l[j+1][k]==a[j])  r[j][k] = 0;
					else if(a[j]<l[j+1][k] && a[j]<r[j+1][k] || a[j]>l[j+1][k] && a[j]>r[j+1][k])  r[j][k] = a[j];
					else if(l[j+1][k]<r[j+1][k])  r[j][k] = a[j]-1;
					else  r[j][k] = a[j]+1;
				}
			}
			if(r[1][n-1]==a[n])
				printf("0\n");
			else
				printf("1\n");
		}
	}
	return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值