【目标跟踪: 相关滤波器 四】相关滤波

原创 2017年01月02日 21:53:18

相关滤波

为本篇博文表述方便,特将前几篇中几个重要的公式在此一并贴出,不懂的可以去看前几篇博文。

w=(XTX+λI)1XTy(1)

w=(XHX+λI)1XHy(2)

α=(K+λI)1y(3)

A+B=C(a+b)(4)

AB=C(F1(F(a)F(b)))(5)

XT=Fdiag(F(x))FH(6)

X1=Fdiag(F(x))1FH(7)

F(Xy)=F(x)F(y)(8)

线性相关滤波

首先考虑一维样本,即一行(N个)图像像素,每个样本只有一维特征,当使用线性岭回归时,其解为式(1),其中的X本质上是一个列向量。当引入循环矩阵之后,每个样本的特征被对应的扩展为由所有样本组成的循环向量,即X成为一个N×N的矩阵,其图形化表示如下图所示。
这里写图片描述
循环矩阵是联系样本时域空间与频域空间的纽带,引入循环矩阵之后,线性岭回归的解为式(2),其XHX项可做如下简化:

XHX=Fdiag(F(x))FHFdiag(F(x))FH=Fdiag(F(x))diag(F(x))FH=Fdiag(F(x)F(x))FH

可以看出,XHX项也是循环矩阵,其中F(x)F(x)项在信号处理领域称为自相关(auto-correlation)。考虑到单位矩阵I是对角阵,F是酉矩阵,根据循环矩阵的性质,则可继续简化如下:
w=(XHX+λI)1XHy=(Fdiag(F(x)F(x))FH+λI)1Fdiag(F(x))FHy=(Fdiag(F(x)F(x)+λ)FH)1Fdiag(F(x))FHy=Fdiag(F(x)F(x)+λ)1FHFdiag(F(x))FHy=Fdiag(F(x)F(x)F(x)+λ)FHy

根据式(8)对将w转换到频域得:
F(w)=(F(x)F(x)F(x)+λ)F(y)=F(x)F(y)F(x)F(x)+λ(9)

式(9)即为所求的线性岭回归的解,由于该解在频域空间,而且涉及到样本频谱的相关运算,故该算法通常又被称作“相关滤波”,该解被称作“相关滤波器”。可以看出,该解的求解过程巧妙的借用了DFT把时域内矩阵的乘法与求逆运算转换到频域,变成了矩阵元素之间的对位运算。时域内求解w的时间复杂度为O(N3),当使用FFT时,该求解过程的时间复杂度则为O(NlogN),在计算速度上有质的提升,而这也是相关滤波器能实现高速跟踪的核心所在。

核相关滤波

考虑使用核岭回归的情况,首先要构造核矩阵K,而且为了充分利用循环矩阵的性质实现快速计算,核矩阵K必须是循环矩阵。
根据核函数的定义:Kij=κ(xi,xj)=φ(xi),φ(xj),其中xi表示第i个样本。在由一维样本x生成的循环矩阵X中,xi泛化为X的第i行元素。则K的第i行元素为:Ki=κ(xi,x)=φ(xi),φ(x),即X的所有行元素与第i行元素在由映射函数φ()定义的希尔伯特空间中的内积。K的每一行元素都是遍历了X中的所有元素生成的,只是顺序有所不同,故核矩阵K必定是循环矩阵。
根据循环矩阵的性质,对式(3)进行简化:

α=(K+λI)1y=(Fdiag(F(kxx))FH+λI)1y=Fdiag(F(kxx)+λ)1FHy

其中,kxx表示由一维样本x生成的自相关核向量,根据式(8),则有:
F(α)=(1F(kxx)+λ)F(y)=F(y)F(kxx)+λ(10)

常见的具有内积形式的核函数都可满足要求,如线性函数,多项式函数,径向基函数,其核向量的时域与频域表达式分别如下:

1.线性核函数

{kxz=κ(x,z)=xTzF(kxz)=F(x)F(z)(11)

其中,z表示待检测样本,x表示训练样本,F(x)F(z)项在信号处理领域称为互相关(cross-correlation),kxz表示xz的互相关核,一般在样本z的检测阶段采用,而在样本的训练阶段,如式(10)所示,则取样本x的自相关核,即kxx形式。此处为避免样本的混淆,统一采用kxz表示核向量。

2.多项式核函数

kxz=κ(x,z)=(xTz+a)bF(kxz)=(F(x)F(z)+a)b(12)

3.径向基核函数

径向基核函数形式为kxz=κ(x,z)=h(xz2),通常使用高斯核函数代替

kxz=κ(x,z)=exp(1σ2(x2+z22xTz))F(kxz)=F(exp(1σ2(x2+z22F1(F(x)F(z)))))(13)


考虑使用线性核函数的情况,将其代入式(10)得:

F(α)=F(y)F(x)F(x)+λ

由于αw在对偶空间的表示,二者存在以下关系:
w=i=1Nαiφ(xi)=i=1Nαixi=XTα

根据式(6)对w展开得:
w=(Fdiag(F(x))FH)Tα=Fdiag(F(x))FHα

根据式(8)对将其转换到频域得:
F(w)=(F(x))F(α)=F(x)F(y)F(x)F(x)+λ

与式(9)对比发现,当采用线性核函数时,该滤波器与常规的线性滤波器是完全等价的。由此说明,线性相关滤波是核相关滤波的一类特殊情况。在下文对相关滤波的论述中,统一采用核相关滤波的形式。

快速检测

在样本检测阶段,每个样本的回归值由下式唯一确定:

f(z)=(Kxz)Tα(14)

其中,α为由x的自相关核kxx训练出来的在希尔伯特空间的分类面,Kxz为由xz的互相关核kxz生成的循环矩阵。f(z)包含了基础样本每一个循环移位情况对应的相关值,该响应中最大值位置即为当前检测样本与训练样本最相似的位置。同样,为实现高速计算,将式(14)转换到频域空间,对其化简得:
f(z)=(Fdiag(F(kxz))FH)Tα=Fdiag(F(kxz))FHα=F1((F(kxz))F(α))=F1(F(kxz)F(α))(15)

式(15)即为所要求的快速检测表达式,可以看出,该式同样将矩阵的乘法运算转换成了矩阵元素的对位乘法运算,算法的时间复杂度由O(n2)降为O(nlogn)

相关滤波在二维样本上的推广

前文对相关滤波原理的研究与推导仅仅局限于一维样本的情况,而实际应用中,对图像样本进行回归分类尤为常见,故非常有必要将相关滤波算法推广到二维样本的情况。
对于图像,一维样本特指图像的一行像素,二维样本则指整个图像。对于长度为N的一维样本在行方向上的循环位移构成N×N的循环矩阵,其可视化形式如下图所示。
这里写图片描述
对于M×N的二维样本,其原本就是矩阵,需要在行和列两个方向上分别进行循环位移,其广义循环矩阵其实是M2×N2的矩阵,其可视化形式如下图所示,
这里写图片描述
为方便宏观上观察,目标图像每次位移固定的像素数,图中(0,0)号示样表示原始样本。
然而,通过研究上文中一维样本的相关滤波原理,可以发现:虽然在原理的推导过程中,一维样本需要转化为循环矩阵,然而在该算法的最终原理公式中,如式(10)~(13)、(15)所示,并没有涉及该样本的循环矩阵形式,所有参与计算的变量仍然是样本的基础形态,此过程中起着重要作用的部分就是DFT。

DFT有两个重要性质分别是“周期性”与“平移性”,一维样本的循环位移相当于在时域内对样本进行了周期扩展与位移,由该样本生成的循环矩阵的每一行元素的频谱都具有完全一致的功率谱,而且该特性同样适用于二维样本,其表现形式如下图所示。
这里写图片描述这里写图片描述
实际上,DFT本身就已经隐式的对样本进行了循环位移的操作。而FFT不仅大大降低了算法的时间复杂度,而且通过对原始样本的变换,使得相关滤波器在频域中包含了样本形态的“无限可能”,也使得相关滤波算法很容易的推广到二维样本。

此处仅选取式(10)、(13)、(15)这三个核心公式进行推广,其中为表述简洁方便,用上标(^)表示该元素的傅立叶变换,如X^=F(X)。 式(10)可重新表示为

A^=Y^K^XX+λ(16)

其中,A表示α的二维扩展,表现为矩阵的形式,实际应用中通常仅使用其频域形式A^,宏观上可以称之为“相关滤波器”;Y表示样本标签y的二维扩展;KXX表示训练样本的自相关核kxx的二维扩展。
式(13)可重新表示为:
KXZ=exp(1σ2(X2+Z22F1(X^Z^)))(17)

其中,X表示训练样本矩阵,X^表示训练样本矩阵经二维DFT后的结果矩阵的共轭,Z表示检测样本矩阵,KXZ表示训练样本与检测样本的互相关核矩阵。在训练阶段Z可以取为训练样本X,求得KXX表示训练样本的自相关核矩阵。

式(15)可重新表示为:

R=F1(K^XZA^)(18)

其中, R表示滤波响应矩阵,矩阵中最大值的位置即为当前样本中目标所在位置。以上三个公式是核相关滤波跟踪算法的核心所在。


基础理论部分到此为止,后续博文重点介绍该算法的实现

版权声明:本文为博主原创文章,转载请注明出处

计算机视觉之跟踪算法——相关滤波器Correlation Filter

ASEF相关滤波器:Average of Synthetic Exact Filters David S. Bolme, Bruce A. Draper, J. Ross Beveridge C...

相关滤波跟踪(MOSSE)

转载自:http://blog.csdn.net/autocyz/article/details/48136473 相关滤波跟踪(MOSSE) 在信号处理中,有这么一个概念——相关性(co...

基于相关滤波跟踪原理 from An Experimental Survey on Correlation Filter-based Tracking

基于相关滤波器的跟踪算法,典型的算法有KCF、DSST、STC、SAMF等。这些算法的大致框架相差不大。 文章中作者对近年来基于相关滤波方法的视觉跟踪的有关研究进行了总结,通过一个统一的框架,总结了1...

相关滤波跟踪(MOSSE)

相关滤波跟踪(MOSSE) 在信号处理中,有这么一个概念——相关性(correlation),用来描述两个因素之间的联系。而相关性又分为cross-correlation(互相关,两个信号之间的联系...
  • autocyz
  • autocyz
  • 2015年08月31日 17:17
  • 13403

用核化的相关滤波器来高速跟踪

原文来自 Joao F. Henriques 等人的“High-Speed Tracking with Kernelized Correlation Filters”。...

核相关滤波-KCF-视频跟踪算法解析(1)

动机: 大部分基于检测的视频跟踪算法,当选取充足的样本时,计算量太大无法保证跟踪算法的实时性,因此,大部分基于检测的算法都以牺牲样本的数量来保证算法的实时性。这使得跟踪算法的鲁棒性比较差。因此,有没有...

相关滤波目标跟踪学习笔记(一)——研究历史及现状

学习相关滤波目标跟踪有一段时间了,中间走了不少弯路,浪费了不少时间,主要原因是目标不明确。现在有时间把之前学习的过程总结一下,希望对初学者有所帮助。 一、研究历史及现状 本人学习相关滤波最先接触的...

目标跟踪之相关滤波:CF及后续改进篇

一. 何为相关滤波?        Correlation Filter 最早应用于信号处理,用来描述两个信号之间的相关性,或者说相似性(有点像早期的概率密度),先来看定义:        对于两个数...

相关滤波目标跟踪学习笔记(二)——数据库简介

目标跟踪作为计算机视觉中的一个大方向,人们对它的研究已经几十年了,但是到目前为止并没有哪个算法能达到100%的不跟丢。目标跟踪过程中存在着许多复杂干扰,比如遮挡,形变,背景干扰,光照变化等,这也是我们...

相关滤波目标跟踪学习笔记(三)——KCF算法公式理解

KCF算法特点:1、通过循环移位产生了大量的虚拟样本; 2、利用循环矩阵可以在傅里叶域对角化的性质,大大减少了运算量,提高了运算速度; 3、核函数的运用,提高了分类器的性能; 4、采用HOG特征...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【目标跟踪: 相关滤波器 四】相关滤波
举报原因:
原因补充:

(最多只允许输入30个字)