原创 2016年08月28日 23:48:02

Problem here


Gigel has a strange “balance” and he wants to poise it. Actually, the device is different from any other ordinary balance.
It orders two arms of negligible weight and each arm’s length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.


The input has the following structure:
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: ‘-’ for the left arm and ‘+’ for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights’ values.


The output contains the number M representing the number of possibilities to poise the balance.
Sample Input

2 4
-2 3
3 4 5 8
Sample Output





#include <iostream>
#include <memory.h>
#include <stdio.h>
using namespace std;

int cost[30], weight[30];
int dp[25][15001];
int n, m;

int main(){
    while(~scanf("%d %d", &n, &m)){
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= n; i++)
            scanf("%d", &cost[i]);
        for(int i = 1; i <= m; i++)
            scanf("%d", &weight[i]);

        dp[0][7500] = 1;
        for(int i = 1; i <= m; i++)
            for(int j = 0; j <= 15000; j++)
                    for(int k = 1; k <= n; k++)
                        dp[i][j+weight[i] * cost[k]] += dp[i-1][j];

        printf("%d", dp[m][7500]);
    return 0;



  • 2011年07月31日 22:52
  • 10KB
  • 下载


  • 2012年05月11日 02:16
  • 1KB
  • 下载

POJ 1837 Balance(01背包)

POJ 1837 Balance(01背包) http://poj.org/problem?id=1837 题意:        有一个天平,天平左右两边各有若干个钩子,总共有C个钩子(每个钩子...

POJ 2142 The Balance 拓欧

The Balance   Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a do...

POJ_2142_The Balance(模线性方程)

The Balance Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3341   Ac...

poj 1837 Balance -dp-01背包

Balance Gigel has a strange "balance" and he wants to poise it. Actually, the device is different fr...
  • ly59782
  • ly59782
  • 2016年10月22日 16:44
  • 132

poj2142(THE BALANCE)(扩展欧几里得入门题)

总共要考虑一下三种情况 1. a *x=b*y+d; 2. a*x=b*y-d; 3. a*x+b*y=d;(其中x和y均为非负整数,可由扩展欧几里得算法求得)#include #...

POJ 1837 Balance(01背包 动态规划)

Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12613   Accepted: 7903 ...


DescriptionGigel has a strange “balance” and he wants to poise it. Actually, the device is different...

POJ 1837 Balance(二维dp)

题意: 一个天平,给n个不同长度(g[i])方向的钩子,m个不同重量(w[i])砝码,问有多少钟方法在使用了所有砝码后使得天平平衡. 思路: 一开始想的 以为钩子也要全部用上,这样就比较简单了,不...