原创 2016年08月28日 23:48:02

Problem here


Gigel has a strange “balance” and he wants to poise it. Actually, the device is different from any other ordinary balance.
It orders two arms of negligible weight and each arm’s length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.


The input has the following structure:
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: ‘-’ for the left arm and ‘+’ for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights’ values.


The output contains the number M representing the number of possibilities to poise the balance.
Sample Input

2 4
-2 3
3 4 5 8
Sample Output





#include <iostream>
#include <memory.h>
#include <stdio.h>
using namespace std;

int cost[30], weight[30];
int dp[25][15001];
int n, m;

int main(){
    while(~scanf("%d %d", &n, &m)){
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= n; i++)
            scanf("%d", &cost[i]);
        for(int i = 1; i <= m; i++)
            scanf("%d", &weight[i]);

        dp[0][7500] = 1;
        for(int i = 1; i <= m; i++)
            for(int j = 0; j <= 15000; j++)
                    for(int k = 1; k <= n; k++)
                        dp[i][j+weight[i] * cost[k]] += dp[i-1][j];

        printf("%d", dp[m][7500]);
    return 0;

POJ 1837 Balance(动态规划之背包问题)

Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11436   Accepted: 7130 ...
  • 2015年04月15日 20:12
  • 1443

POJ 2142The Balance(扩展欧几里得)

The Balance Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measu...
  • wust_xhj
  • wust_xhj
  • 2015年07月17日 13:47
  • 1031

Poj 1837 Balance(经典分组背包)

题目大意: 有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数。 其中可以把天枰看做一个以x轴0点作为平衡点的横轴 看了...
  • ygqwan
  • ygqwan
  • 2013年05月06日 23:34
  • 1035


  • 2011年07月31日 22:52
  • 10KB
  • 下载


  • 2012年05月11日 02:16
  • 1KB
  • 下载


Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14322   Accep...
  • qq_34826781
  • qq_34826781
  • 2017年03月31日 22:14
  • 130

POJ 2142 : The Balance-解不定方程,一元线性同余

  • Booky_Amnesia
  • Booky_Amnesia
  • 2015年01月10日 21:43
  • 316

POJ2142The Balance扩展欧几里得

题目:http://poj.org/problem?id=2142   题意:有两种类型的砝码质量分别为和,要求称出质量为的物品,要求的数量和的数量的和      最小,如果有多个最小值,取最小...
  • Rain722
  • Rain722
  • 2017年04月29日 16:05
  • 133

poj2142(THE BALANCE)(扩展欧几里得入门题)

总共要考虑一下三种情况 1. a *x=b*y+d; 2. a*x=b*y-d; 3. a*x+b*y=d;(其中x和y均为非负整数,可由扩展欧几里得算法求得)#include #...
  • abc13068938939
  • abc13068938939
  • 2016年07月02日 15:04
  • 143

POJ2142 The Balance(扩展欧几里得算法)

The Balance Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6473   Accepted: 2849...
  • H_Fighter
  • H_Fighter
  • 2017年04月01日 11:57
  • 201