BZOJ 3004 吊灯 树形DP

25 篇文章 1 订阅

题目大意:给定一棵树,要求将这棵树分成 nk 个连通块,每块大小为 k ,求所有可行的k

首先 k 一定是n的约数。(废话
然后我们有一个结论:某个 k 满足条件当且仅当存在nk个节点满足以每个节点为根的子树大小都是 k 的倍数
证明:
首先不可能存在超过nk个节点满足以每个节点为根的子树大小都是 k 的倍数,这是废话
首先证明必要性:
假设我们已经有了一组合法的方案,那么对于每一个连通块,我们找到这个连通块中深度最小的节点,以这个节点为根的子树大小一定是k的倍数
由于这样的节点有 nk 个,因此必要性得证
下面来证明充分性:
假设现在我们已经找到了 nk 个节点满足以每个节点为根的子树大小都是 k 的倍数,那么:
首先我们从根节点出发开始DFS,每遇到一个节点满足以这个节点为根的子树大小是k的倍数,就把这个节点为根的子树砍掉
这样做之后,我们得到了一个连通块和一些子树,其中连通块的大小为 k 的倍数,且除根节点外其余nk1个节点都在那些子树中
对每个子树重复这一操作,一定能得到一组合法的方案
因此充分性得证

然后就好办了,我们搞出每个节点的 size (这里不要DFS,会T掉),然后令 fi 表示大小为 i 的子树个数,对于每个约数在f数组中扫一遍即可
时间复杂度 O(10σ(n))=O(10nloglogn)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 1201001
using namespace std;
int n;
int divisors[2020],tot;
int fa[M],size[M],f[M];
void Initialize()
{
    memset(size,0,sizeof size);
    memset(f,0,sizeof f);
}
void Decomposition(int n)
{
    int i;
    for(i=1;i*i<n;i++)
        if(n%i==0)
            divisors[++tot]=i,divisors[++tot]=n/i;
    if(i*i==n)
        divisors[++tot]=i;
    sort(divisors+1,divisors+tot+1);
}
namespace IStream{
    #define L (1<<16)
    char Get_Char()
    {
        static char buffer[L],*S,*T;
        if(S==T)
        {
            T=(S=buffer)+fread(buffer,1,L,stdin);
            if(S==T) return EOF;
        }
        return *S++;
    }
    int Get_Int()
    {
        int re=0;
        char c=Get_Char();
        while(c<'0'||c>'9')
            c=Get_Char();
        while(c>='0'&&c<='9')
            re=(re<<1)+(re<<3)+(c-'0'),c=Get_Char();
        return re;
    }
}
int main()
{
    //freopen("3004.in","r",stdin);
    //freopen("3004.out","w",stdout);
    using namespace IStream;
    int T,i,j;
    cin>>n;
    Decomposition(n);
    for(T=1;T<=10;T++)
    {
        printf("Case #%d:\n",T);
        Initialize();
        for(i=2;i<=n;i++)
        {
            if(T==1)
                fa[i]=Get_Int();
            else
                fa[i]=(fa[i]+19940105)%(i-1)+1;
        }
        for(i=n;i;i--)
            size[fa[i]]+=++size[i];
        for(i=1;i<=n;i++)
            f[size[i]]++;
        for(i=1;i<=tot;i++)
        {
            int temp=0;
            for(j=divisors[i];j<=n;j+=divisors[i])
                temp+=f[j];
            if(temp==n/divisors[i])
                printf("%d\n",divisors[i]);
        }
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值