题目大意:给定n个石子,两人轮流操作,规则如下:
轮到先手操作时:若石子数
轮到后手操作时:若石子数<q,那么只能添加q个石子,否则可以拿走
拿走所有石子的人胜利,问先手是否必胜,或输出游戏会永远进行下去
令d=gcd(p,q),那么若d不能整除
否则将p/=d,q/=d,n/=d,显然不影响结果
然后我们讨论:
状态1.若p=q,先手必胜
不用解释吧= =
状态2.若p>q,n<p,那么先手必败
证明:
显然先手的操作只能是添加p个石子,然后后手只需要每次将石子数
故先手永远不能取石子,而由于p,q互质,因此总有一时刻n+kp≡0( mod q),故先手必败
状态3.若p>q,n≥p,则先手必胜当且仅当n mod p<q且(p−q)|(n mod p)
证明:
显然如果先手操作后石子数x≥q,那么后手只需要将石子数变为x mod q,就转化成了状态2,先手必败
因此先手必胜只有可能如此操作:
先手取成n mod p -> 后手+q -> 先手−p -> 后手+q -> …
那么一轮下来,石子数x变为了原来的
故当(p−q)|(n mod p)且n mod p<q时先手必胜
状态4:若p<q,n<p,那么先手第一次操作只能是+p
那么如果n+p<q,则后手只能+q,先手 mod p后转化为状态2,先手必胜
否则转化为状态3
状态5:若p<q,n≥p,那么先手将石子数取为n mod p后转化为状态2,先手必胜
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,p,q;
bool Calculate(int n,int p,int q)
{
return n%p<q && n%p%(p-q)==0;
}
int main()
{
int T;
for(cin>>T;T;T--)
{
scanf("%d%d%d",&p,&q,&n);
int gcd=__gcd(p,q);
if(n%gcd)
{
puts("R");
continue;
}
p/=gcd;q/=gcd;n/=gcd;
if(p==q)
puts("E");
else if(p>q)
{
if(n<p) puts("P");
else puts(Calculate(n,p,q)?"E":"P");
}
else
{
if(n<p)
{
if(n+p<q) puts("E");
else puts(Calculate(n+p,q,p)?"P":"E");
}
else puts("E");
}
}
return 0;
}