# BZOJ 4176 Lucas的数论 莫比乌斯反演

2626人阅读 评论(2)

d|ij$d|ij$等价于dgcd(i,d)|j$\frac d{\gcd(i,d)}|j$可得
ni=1nj=1d(ij)$\sum_{i=1}^n\sum_{j=1}^nd(ij)$
=ni=1n2d=1ngcd(i,d)d$=\sum_{i=1}^n\sum_{d=1}^{n^2}\lfloor\frac{n*\gcd(i,d)}d\rfloor$
=nd=1ndi=1n2dj=1nj[gcd(i,j)=1]$=\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac{n^2}d\rfloor}\lfloor\frac nj\rfloor[\gcd(i,j)=1]$
=nd=1ndi=1nj=1nj[gcd(i,j)=1]$=\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^n\lfloor\frac nj\rfloor[\gcd(i,j)=1]$
=nd=1ndi=1nj=1njk|i,k|jμ(k)$=\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^n\lfloor\frac nj\rfloor\sum_{k|i,k|j}\mu(k)$
=nk=1μ(k)(nkd=1nkd)2$=\sum_{k=1}^n\mu(k)(\sum_{d=1}^{\lfloor\frac nk\rfloor}\lfloor\frac n{kd}\rfloor)^2$
O(n)$O(\sqrt n)$枚举nk$\lfloor\frac nk\rfloor$
μ(k)$\mu(k)$的部分同BZOJ3944

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 5700000
#define MOD 1000000007
using namespace std;

int n,S;

int Get_Sum1(int n)
{
int i,last,re=0;
for(i=1;i<=n;i=last+1)
{
last=n/(n/i);
(re+=(long long)(last-i+1)*(n/i)%MOD)%=MOD;
}
return re;
}

int _sum2[M];
int mu[M],prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
int i,j;
mu[1]=1;
for(i=2;i<=S;i++)
{
if(!not_prime[i])
{
mu[i]=-1;
prime[++tot]=i;
}
for(j=1;prime[j]*i<=S;j++)
{
not_prime[prime[j]*i]=true;
if(i%prime[j]==0)
{
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
}
}
int Get_Sum2(int x)
{
if(x<=S) return mu[x];
return _sum2[n/x];
}
void Pretreatment()
{
int i,j,last;
Linear_Shaker();
for(i=1;i<=S;i++)
mu[i]+=mu[i-1];
for(i=1;n/i>S;i++);
for(j=i;j;j--)
{
int n=::n/j;
_sum2[j]=1;
for(i=2;i<=n;i=last+1)
{
last=n/(n/i);
(_sum2[j]-=(long long)(last-i+1)*Get_Sum2(n/i)%MOD)%=MOD;
}
}
}

int main()
{
int i,last,ans=0;
cin>>n;S=ceil(pow(n,0.75)-1e-7)+1e-7;
Pretreatment();
for(i=1;i<=n;i=last+1)
{
last=n/(n/i);
long long temp=Get_Sum1(n/i);
(ans+=(Get_Sum2(last)-Get_Sum2(i-1))*temp%MOD*temp%MOD)%=MOD;
}
cout<<(ans+MOD)%MOD<<endl;
return 0;
}
0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：1219608次
• 积分：19848
• 等级：
• 排名：第447名
• 原创：742篇
• 转载：2篇
• 译文：0篇
• 评论：464条
文章分类
阅读排行
最新评论