BZOJ 4176 Lucas的数论 莫比乌斯反演

原创 2015年07月10日 18:20:57

题目大意:给定n(n109),求ni=1nj=1d(ij)

推错式子害死人。。。
d|ij等价于dgcd(i,d)|j可得
ni=1nj=1d(ij)
=ni=1n2d=1ngcd(i,d)d
=nd=1ndi=1n2dj=1nj[gcd(i,j)=1]
=nd=1ndi=1nj=1nj[gcd(i,j)=1]
=nd=1ndi=1nj=1njk|i,k|jμ(k)
=nk=1μ(k)(nkd=1nkd)2
O(n)枚举nk
μ(k)的部分同BZOJ3944
后面那个平方里面的东西每次O(nk)求 时间复杂度O(n1)+O(n2)+...+O(nn)=O(n34)
总时间复杂度O(n34)

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 5700000
#define MOD 1000000007
using namespace std;

int n,S;

int Get_Sum1(int n)
{
    int i,last,re=0;
    for(i=1;i<=n;i=last+1)
    {
        last=n/(n/i);
        (re+=(long long)(last-i+1)*(n/i)%MOD)%=MOD;
    }
    return re;
}

int _sum2[M];
int mu[M],prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
    int i,j;
    mu[1]=1;
    for(i=2;i<=S;i++)
    {
        if(!not_prime[i])
        {
            mu[i]=-1;
            prime[++tot]=i;
        }
        for(j=1;prime[j]*i<=S;j++)
        {
            not_prime[prime[j]*i]=true;
            if(i%prime[j]==0)
            {
                mu[prime[j]*i]=0;
                break;
            }
            mu[prime[j]*i]=-mu[i];
        }
    }
}
int Get_Sum2(int x)
{
    if(x<=S) return mu[x];
    return _sum2[n/x];
}
void Pretreatment()
{
    int i,j,last;
    Linear_Shaker();
    for(i=1;i<=S;i++)
        mu[i]+=mu[i-1];
    for(i=1;n/i>S;i++);
    for(j=i;j;j--)
    {
        int n=::n/j;
        _sum2[j]=1;
        for(i=2;i<=n;i=last+1)
        {
            last=n/(n/i);
            (_sum2[j]-=(long long)(last-i+1)*Get_Sum2(n/i)%MOD)%=MOD;
        }
    }
}

int main()
{
    int i,last,ans=0;
    cin>>n;S=ceil(pow(n,0.75)-1e-7)+1e-7;
    Pretreatment();
    for(i=1;i<=n;i=last+1)
    {
        last=n/(n/i);
        long long temp=Get_Sum1(n/i);
        (ans+=(Get_Sum2(last)-Get_Sum2(i-1))*temp%MOD*temp%MOD)%=MOD;
    }
    cout<<(ans+MOD)%MOD<<endl;
    return 0;
}

BZOJ 3930 CQOI2015 选数 莫比乌斯反演

题目见 http://pan.baidu.com/s/1o6zajc2 此外不知道H-L #include #include #include #include #includ...
  • PoPoQQQ
  • PoPoQQQ
  • 2015年04月07日 11:16
  • 18605

BZOJ 4174 tty的求助 莫比乌斯反演

题目大意:求∑Nn=1∑Mm=1∑m−1k=0⌊nk+xm⌋ mod 998244353\sum_{n=1}^N\sum_{m=1}^M\sum_{k=0}^{m-1}\lfloor\frac{nk+...
  • PoPoQQQ
  • PoPoQQQ
  • 2015年07月09日 19:13
  • 2634

bzoj 4176 Lucas的数论 莫比乌斯反演

∑ni=1∑nj=1d(i,j)=∑ni=1∑nj=1∑n2k=1[k|ij]\sum_{i=1}^{n}\sum_{j=1}^{n}d(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{...
  • make_it_for_good
  • make_it_for_good
  • 2016年11月02日 14:53
  • 429

bzoj 4176: Lucas的数论 莫比乌斯反演+杜教筛

题意 设f(i)f(i)表示i的约数个数。给出n,求∑ni=1∑nj=1f(ij)\sum_{i=1}^n\sum_{j=1}^nf(ij)。答案模1e9+7. n 分析 按套路来,有f(...
  • qq_33229466
  • qq_33229466
  • 2018年01月09日 20:18
  • 32

[BZOJ4176]Lucas的数论(莫比乌斯反演+杜教筛)

题目描述传送门题解做约数个数和的时候有一个结论: d(nm)=∑i|n∑j|m[(i,j)=1]d(nm)=\sum\limits_{i|n}\sum\limits_{j|m}[(i,j)=1] ...
  • Clove_unique
  • Clove_unique
  • 2017年03月28日 10:59
  • 728

BZOJ 4176: Lucas的数论 莫比乌斯反演 杜教筛

4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Submit: 378  Solved: 242 [Submit][Status]...
  • BlackJack_
  • BlackJack_
  • 2017年11月23日 13:23
  • 86

bzoj4176 Lucas的数论 (杜教筛 +莫比乌斯反演)

bzoj4176 Lucas的数论原题地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4176题意: 去年的Lucas非常喜欢数论题,但是一年以...
  • Bfk_zr
  • Bfk_zr
  • 2017年12月03日 20:19
  • 82

bzoj 4176: Lucas的数论 (反演)

题目描述传送门题目大意: 设f(ij)表示i*j的约束个数,求 ∑i=1n∑j=1nf(ij) mod 1e9+7\sum\limits_{i=1}^n\sum\limits_{j=1}^n f(...
  • clover_hxy
  • clover_hxy
  • 2017年03月20日 11:39
  • 273

BZOJ_P4407 于神之怒加强版(数论+莫比乌斯反演)

BZOJ传送门 Time Limit: 80 Sec Memory Limit: 512 MB Submit: 195 Solved: 94 [Submit][Status][Discuss...
  • qq_18455665
  • qq_18455665
  • 2016年03月06日 15:35
  • 346

【BZOJ2154】Crash的数字表格,数论练习之二维LCM(莫比乌斯反演)

好热啊
  • xym_CSDN
  • xym_CSDN
  • 2016年06月18日 08:14
  • 301
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BZOJ 4176 Lucas的数论 莫比乌斯反演
举报原因:
原因补充:

(最多只允许输入30个字)