MTL LU 分解示例

原创 2005年03月04日 12:32:00

//-*-c++-*-----------------------------------------------------------------
//
//  A simple LU factorization algorithm written using MTL
//  The example matrix is the same as the getrf example, which
//  is the LAPACK version of LU factorization.
//
//-------------------------------------------------------------------------

#include "mtl/lu.h"
#include "mtl/matrix.h"
#include "mtl/dense1D.h"
#include "mtl/utils.h"

/*
  Sample output:
 
  3x3
  [
  [1,2,2],
  [2,1,2],
  [2,2,1]
  ]
  3x3
  [
  [2,1,2],
  [0.5,1.5,1],
  [1,0.666667,-1.66667]
  ]
  [2,2,3,]

也就是,
pivot =
[2,0,0,]
[0,2,0,]
[0,0,3,]

L=
[2*2,0,0],
[0.5,1.5*2,0],
[1,0.666667,-1.66667*3]

U=
  [1,1,2],
  [0,1,1],
  [0,0.666667,1]
 
 

 
  */

int
main()
{
  using namespace mtl;
  //begin
  typedef matrix<double,
                 rectangle<>,
                 dense<external>,
                 column_major>::type Matrix;

  const Matrix::size_type N = 3;
  double da [] = { 1, 2, 2, 2, 1, 2, 2, 2, 1 };

  Matrix A(da, N, N);
  dense1D<int> pivots(N, 0);
  //end
  print_all_matrix(A);
  //begin
  lu_factor(A, pivots);
  //end
  print_all_matrix(A);

  print_vector(pivots);

  return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

LU下三角分解法

带状对角矩阵的LU分解及回代求解算法实现

算法名称:带状对角矩阵的LU分解及回代求解   算法描述:        分解主要是使用笔者前面几篇文章提到过的Crout方法。因为不可能把一个带状对角矩阵A的LU分解也像其压缩形式本是一样紧凑...

LU分解 数值分析

LU分解Doolittle法

矩阵因式分解(LU矩阵分解)与GSL实现

矩阵的因式分解是把一个矩阵A表示为两个或更多个矩阵的乘积,是将复杂的数据进行分解,其中有多种方法,例如:LU分解,秩分解,QR分解,奇异值分解,谱分解等。这里主要介绍对LU分解的认识。 根据参考的书籍...

LU分解MatLab算法分析

  • 2016-10-05 11:58
  • 46KB
  • 下载

eoj1041 矩阵的LU分解

//仅对高斯消元过程中不发生行交换的情况适用。#include #include #include #include #include #include using namespace ...

解线性方程组的LU分解法

  • 2016-03-01 13:21
  • 129KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)