线性代数基础4--置换转置与向量空间

1,置换矩阵补充
前面提到的A=LU假设情况是不进行列变换,那如果进行列变换是什么情况呢?
那么上述情况就变成了PA=LU,这里P是置换矩阵,就是先把A换成正确的顺序,再进行消元.
注意上述情况是A可逆
并且有置换矩阵的两个重要性质.
在这里插入图片描述
那么很明显,A=P逆LU

2,转置
在这里插入图片描述
用符号T表示,最简单的理解就是对应行变为对应列.
在这里插入图片描述

3,对称矩阵
在这里插入图片描述
任意一个矩阵A,A的转置×A就等于一个对称矩阵.
验证一个矩阵是否为对称矩阵,需要看他的转置与其本身是否相同.
在这里插入图片描述
4,线性代数核心–向量空间
什么是向量空间?
空间中一些向量,对于加法与乘法运算封闭,即经过运算任然在这个空间中.也可以说,所有的线性组合在这个空间中.
在这里插入图片描述
这种表述在向量空间中表示,二维实向量空间,就是熟悉的xy坐标系平面.其中向量如(2,3)的转置(3,2)的转置等等.
所有向量空间必须包含原点,因为任意一个向量×0或加上其相反向量都得0向量.
向量都是列的形式
Rn空间表示的是n维的实数空间,n维表示列向量中元素个数.

5,线性空间的子空间
对于一个线性空间,最重要的性质是,其中的任意两个向量经过加法(包括减法)或数乘运算,结果任然在该向量空间中.
子空间:它的全部属于母空间,但是本身又自己构成一个向量空间.
注意:R2并不是R3的子空间.因为向量就不同.一个二维一个三维
下面举例说明R2的子空间.
R2的第一种子空间为直线:
在这里插入图片描述
如图,为R2中的一条直线,对于其上任意向量,数乘在这条直线上,加法也只能加上这条直线上的一个向量,所以加法也成立.
注意:并不是任意一条直线,这条直线必须经过原点,才可以构成子空间.
并且R2的直线子空间与R1有本质区别,R2为二维.

R2的第二种子空间:其本身.

R2的第三种子空间:原点
因为原点子空间只包含0向量,相加只能加0向量(只有0向量在子空间中),而任意数乘也为0
在这里插入图片描述
同理,R3的子空间有四种
1,R3本身
2,过原点的平面
3,过原点的直线
4,0向量空间

6,列空间C(A)
在这里插入图片描述
如上图,A可以看成两个三维向量.那么列空间就是这两个三维向量所有的线性组合所组成的空间,由于只有两个三维向量,所以他表示的列空间,三维空间中的一个过原点的平面.而不能说组成一个二维空间,因为向量是三维的,有本质区别.
另外,如果这两个向量共线,拿得到的就是三维空间中的一条过原点的直线.

7,
对于R3来说,如果取一个平面子空间P和一个不在该平面直线子空间L,那么
L与P的并集是不是R3的子空间?
不是,因为加法不满足封闭
L与P的交集是R3的子空间,并且为0空间

将结论进行推广,对于任意向量空间的两个子空间S与P,那么
S与P的交集任然是一个子空间.因为它必然包含原点,并且满足加法乘法封闭.
例如取两个向量V,M同时属于S与P,那么V+M也一定属于S与P.

8,列空间
在这里插入图片描述
A的列空间是R4的子空间.那么这个子空间有多大
实际含义就是AX=B,如果B为任意向量,X都有解,那么A的列空间就可以说是整个四维空间,本题显然不是这样.因为三个未知数是表示不出四维空间的.这里也可以理解为线性组合的三个系数
在这里插入图片描述
如图是四方程三未知数的情况,可能会有无解情况.
那么下面的问题就是什么样的b可以让方程组有解.
AX=B有解,就是b属于A的列空间中.

那么是否A中的每一列都对结果有贡献,就是说:
如果去掉其中一列,变成两列是否可以得到相同的列空间.答案是肯定的.
这就是初步线性相关的定义.
那么A中第三列对组成线性空间没有贡献,就可以称第一列与第二列为主列.
所以,这个A的列空间其实是R4中的一个平面.

9,零空间
AX=0,这个方程组的所有解,就是得到0向量的线性组合的系数.
在这里插入图片描述
这里说的0空间,其实并不是 R4中的原点,而是X的解空间,由于本例中X为三维向量,所以0空间也是R3的子空间.
所以这里的0空间就是R3中的一条直线.

如何知道我们解AX=0,所得到的0空间也是一个向量空间呢?
如何证明其乘法与加法的封闭性呢?
就是证明取X1,X2两个解,如何证明X1+X2或者2X1等等也是解呢?
在这里插入图片描述
到了这一步,结果已经显然了.

再考虑一个问题,如果B不为0,我们得到的所有解集合起来,还能称为空间吗?
就是说AX=B中,有解时,所有X的集合,构成空间吗?
在这里插入图片描述
显然是不构成的,最起码不会包含原点,那么这些解构成的图形是什么样的?
是一条不过原点的直线.这就是AX=B的解为特解加通解.
通解为0空间,特解为一个让方程成立的解.

10,构造子空间的两种方法
第一种:就像列空间一样,从几个向量出发,得到其所有的线性组合,这些线性组合组成子空间.其实是所有的B构成子空间
第二种:就像0空间一样,通过满足方程组,所有解向量构成一个子空间.由于B已经为0,所以所有X构成子空间.

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值