笔记:Semi-supervised domain adaptation with subspace learning for visual recognition (cvpr15)

本文提出SDASL框架,利用子空间学习进行半监督的域自适应,减少domain shift影响。通过学习领域不变的低维结构,并结合目标域未标记样本,优化分类器。算法在源域和目标域上学习映射,使同类样本在子空间中表示相似,同时保持无标记样本的结构信息。目标函数包含结构化风险、结构保护和流形正则化三个损失项。实验基于decaf模型的FC8层特征进行。
摘要由CSDN通过智能技术生成

本文基于子空间学习提出了一种半监督的域自适应框架(SDASL)。在这个框架中,一方面学习一个领域不变(domain invariant)的低维结构(low-dimension structure),也就是子空间,从而减少不同域上数据分布不同带来domain shift影响;另一方面通过正则项利用目标域上的unlabeled样本来学习目标域上的结构信息。具体而言,首先在源域和目标域上分别学习一个映射(这个映射用一个矩阵表示),可以将样本表示映射到一个低维的公共子空间上,然后在这个子空间上进行分类,使用线性分类器。整个流程可以用下图表示:
architecture
需要注意的是文章算法使用的并不是直接图像rgb特征,而是图像在decaf上第8层全连接层输出。
我们希望这个子空间首先具有这样的性质:对于属于同类的样本,不管来自于哪个域,它们的表示应该尽可能相似,这个通过拉普拉斯矩阵来构造损失;同时,为了充分利用目标域上丰富的无标记样本,我们要求相近的无标记样本最后得到的分类器输出也相似。这种相似关系在算法的输入空间上刻画,通过affinity matrix表示。本文针对上面的目标构造了三个损失项,一个在文章称为结构化风险(structural risk),它是分类损失;第二个称为结构保护(structure preservation),保证同类的样本(不管来自于哪个域)都有相近的表示;第三个称为流形正则(manifold regularizationÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值