【域适应九】2023 CVPR - Semi-Supervised Domain Adaptation with Source Label Adaptation

1.motivation

半监督域自适应(SSDA)最简单的策略,通常称为S+T。当前方法通常旨在通过特征空间映射和伪标签分配将目标数据与标记的源数据对齐。然而,这种面向源的模型有时会将目标数据与错误类的源数据对齐,从而降低分类性能。本文提出了一种新的源自适应范式,该范式调整源数据以匹配目标数据。关键思想是将源数据视为理想目标数据的噪声标记版本。本文提出的模型借助于从目标角度设计的强大的清洁器组件来动态地清除标签噪声。由于该范式与现有SSDA方法背后的核心思想非常不同,本文提出的模型可以很容易地与它们相结合,以提高它们的性能。对两种最先进的SSDA方法的经验结果表明,所提出的模型有效地清除了源标签内的噪声,并在基准数据集上表现出优于这些方法的性能。

本文贡献总结如下:

  • 经典的面向源的方法可能仍然受到从S+T导出的有偏差的特征空间的影响。为了摆脱这种困境,本文建议通过修改原始源标签来使源数据适应目标空间。
  • 本文将DA视为NLL噪声标签学习问题的一个特例,并提出了一种新的源自适应范式。本文的SLA框架可以很容易地与其他现有算法相结合,以提高它们的性能。
  • 当与最先进的SSDA算法相结合时,证明了本文提出的SLA框架的有用性。该框架在两个主要基准上显著改进了现有算法,为解决DA问题开辟了新的方向。

2. Related Work

问题设置。在SSDA中,对来自源域的标记源数据S、目标域的标记目标数据L和来自目标域上未标记目标数据U进行采样。通常,|L|比|S|和|U|小得多,例如每个类一个或三个示例。本文的目标是训练具有S、L和U的SSDA模型g,使其在目标域上表现良好。

半监督域自适应(SSDA)。SSDA算法通常包括三个损失函数:

其中Ls代表由源数据得到的损失。Ll,Lu表示标记的和未标记的目标数据的损失。在本文的研究中,注意到,从目标数据的角度来看,源标签可能会显得有噪声。因此,开发了一个源自适应框架,以逐步使源数据适应目标空间。由于本文正在解决这个问题的一个新方面,本文的框架可以很容易地应用于上面提到的几种SSDA算法,从而进一步提高整体性能。

噪声标签学习(NLL)。机器学习算法的有效性在很大程度上取决于所收集标签的质量。关于目前的深度神经网络设计,上述问题可能会恶化,因为深度模型能够以看似随机的方式拟合数据集,而与标签的质量无关。为了清除噪声标签,[20]提出了一种将噪声标签与自预测相混合的平滑机制。[26]将干净标签建模为可训练参数,并设计联合优化算法来交替更新参数。[17,25,32]估计转换矩阵以校正损坏的标签。然而,学习全局转移矩阵通常需要对噪声标签的来源进行强有力的假设,这在现实世界中很难验

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领适应的对比适应网络。 迁移学习是指将从一个源领学到的知识应用到一个目标领的任务中。在无监督领适应中,源领和目标领的标签信息是不可用的,因此算法需要通过从源领到目标领的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领上的特征表示,使其能够适应目标领的特征分布。CAN的关键思想是通过对比损失来对源领和目标领的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领和目标领的特征表示。然后,通过对比损失函数来测量源领和目标领的特征之间的差异。对比损失函数的目标是使源领和目标领的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领的特征能够适应目标领。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领适应的对比适应网络,通过对源领和目标领的特征进行对比学习,使得源领的特征能够适应目标领。该方法在实验中展现了较好的性能,有望在无监督领适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值