Tri Tiling
Time Limit:1000MS Memory Limit:65536K
Total Submit:27 Accepted:16
Description
In how many ways can you tile a 3xn rectangle with 2x1 dominoes?
Here is a sample tiling of a 3x12 rectangle.
Input
Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 ≤ n ≤ 30.
Output
For each test case, output one integer number giving the number of possible tilings.
Sample Input
2
8
12
-1
Sample Output
3
153
2131
Source
这个公式……推得我太纠结了,这道题开始以为是上次给09出的阳台装修,做了半个小时没结果,就慌死了……结果翻过去一看,不是! = =! 10minA掉阳台装修,反过来再看,有些思路了。
首先只有是偶数才非零,只看偶数就可以了。来一个数n,它比上一个数差2,而2能摆出三种情况,这样如果这个2和前面是分开的,这种情况是 f[n-2] * 3,剩下就要考虑不分开的情况,这也是关键。
与前面相连接。连接的方案有 2 * (a[i-2] + a[i-3] +......+a[0]);
解释一下,2*a[i-X]是最右边有X列类似以下的结构的情况:
以上情况可以上下颠倒,故每种情况又有两种表示,所以需要乘以2。而以上的情况从4开始,然后每次递增2,所以递推式中这部分从i-4开始(如果大等于0的话),每次递减2。
综上,
a[i] = 3*a[i-1] + 2*(a[i-2] + a[i-3] +......+a[0]);
a[i-1] = 3*a[i-2] + 2*(a[i-3] + a[i-3] +......+a[0]);
a[i-1] - a[i-2] = 2*(a[i-2] + a[i-3] +......+a[0]);
ps: here I regard each 2 columns to one
可解得a[i] = a[i-1] * 4 - a[i-2];