无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training。本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by Andrew Ng做出导论性讲解。
关键词:unsupervised learning,feature extraction,feature learning,Sparse Coding,Sparse DBN,Sparse Matrix,Computer Vision,Audio Classification,NLP
Unsupervised feature learning and deep learning 是斯坦福大学机器学习大牛Andrew Y Ng. 近年来研究的主要领域,他在今年的一份工作Building high-level features using large scale unsupervised learning中就通过unsupervised learning解决了从only unlabeled data上建立高维feature detectors的问题。
=========================第一部分:传统方法Pattern Recognition=========================
通常的,我们进行pattern recognition是这样的:

对于不同类别的feature extraction都是必备的一部分,computer进行detection的 perception就是这样的:

下面分别就这三类问题,<Object detection><Audio Classification><NLP>进行经典feature回顾:




无监督学习在computer vision、audio classification和NLP等领域展现出优势,通过unsupervised feature learning和deep learning提升accuracy。本文介绍了Andrew Ng的无监督学习方法,并探讨了Sparse Coding和Sparse DBN在构建特征层级方面的作用。
最低0.47元/天 解锁文章
926

被折叠的 条评论
为什么被折叠?



