Logistic回归为概率型非线性回归模型,是研究二分类观察结果
与一些影响因素
之间关系的一种
多变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是
否患有某种病。
在讲解Logistic回归理论之前,我们先从LR分类器说起。LR分类器,即Logistic Regression Classifier。
在分类情形下,经过学习后的LR分类器是一组权值
,当测试样本的数据输入时,这组权值与测试数
据按照线性加和得到

这里
是每个样本的
个特征。之后按照Sigmoid函数(又称为Logistic函数)的形式求出

由于Sigmoid函数的定义域为
,值域为
,因此最基本的LR分类器适合对两类目标进行分类。
所以Logistic回归最关键的问题就是研究如何求得
这组权值。此问题用极大似然估计来做。
下面正式地来讲Logis

本文介绍了Logistic回归作为二分类模型的原理,包括Sigmoid函数的应用和极大似然估计方法。通过讲解如何使用梯度上升法求解模型参数,展示了Logistic回归模型的训练过程。并以C++为例,说明了实现Logistic回归梯度上升算法的步骤和读取训练数据的方法。
最低0.47元/天 解锁文章
1687

被折叠的 条评论
为什么被折叠?



