二分类问题
我们经常会遇到各种各样的二分类问题,例如判断一张照片是猫或不是猫,判断一个西瓜是好瓜还是坏瓜。解决这类问题的一个很好的方法就是logistic回归。
线性回归
利用简单的线性回归可以进行二分类,这里我们简要介绍以下线性回归的思想,不做具体实现的阐述。
假定拥有的数据集为 m组(x,y)
x 为一组n维列向量,代表我们已知的n个属性
y 为标记,取值为0或1,代表其所属的种类
这样一来,我们相当于得到了n维空间中的m个点,这些点分别具有0或1的属性。
构造n维列向量w以及常数b
得到y~=wTx+b 通过训练得到合适的w和b。
利用y~我们这样进行分类:对于给定的x,当y~>0时,我们认为该对象属于第“1”类,当y~<0时我们认为该对象属于第“0”类,y~=0时随意分。
形象化的理解用线性回归进行分类:相当于在n维空间中找到了wTx+b=0这样一个平面,将所给的点分成了两部分,平面上方的点为1,平面下方的点为0。
这个方法的问题在于:
- 线性回归往