深度学习(2):logistic回归 梯度下降法

本文介绍了二分类问题及其在深度学习中的应用,详细讲解了线性回归的局限性,进而引入logistic回归的概念,通过sigmoid函数进行概率预测。接着讨论了损失函数和最大似然估计在优化模型中的作用,并阐述了梯度下降法用于寻找最优参数w和b的原理。
摘要由CSDN通过智能技术生成

二分类问题

我们经常会遇到各种各样的二分类问题,例如判断一张照片是猫或不是猫,判断一个西瓜是好瓜还是坏瓜。解决这类问题的一个很好的方法就是logistic回归。

线性回归

利用简单的线性回归可以进行二分类,这里我们简要介绍以下线性回归的思想,不做具体实现的阐述。

假定拥有的数据集为 m组(x,y)
   x 为一组n维列向量,代表我们已知的n个属性
   y 为标记,取值为0或1,代表其所属的种类
这样一来,我们相当于得到了n维空间中的m个点,这些点分别具有0或1的属性。

构造n维列向量w以及常数b
得到y~=wTx+b     通过训练得到合适的w和b。
利用y~我们这样进行分类:对于给定的x,当y~>0时,我们认为该对象属于第“1”类,当y~<0时我们认为该对象属于第“0”类,y~=0时随意分。

形象化的理解用线性回归进行分类:相当于在n维空间中找到了wTx+b=0这样一个平面,将所给的点分成了两部分,平面上方的点为1,平面下方的点为0。

这个方法的问题在于:

  1. 线性回归往
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值