在上一篇文章中,讲述了广义线性模型。通过详细的讲解,针对某类指数分布族建立对应的广义线性模型。在本篇文章
中,将继续来探讨广义线性模型的一个重要例子,它可以看成是Logistic回归的扩展,即softmax回归。
我们知道Logistic回归只能进行二分类,因为它的随机变量的取值只能是0或者1,那么如果我们面对多分类问题怎么
办?比如要将一封新收到的邮件分为垃圾邮件,个人邮件,还是工作邮件;根据病人的病情预测病人属于哪种病;对于
诸如MNIST手写数字分类(MNIST是一个手写数字识别库,相见:http://yann.lecun.com/exdb/mnist/)。诸
如此类问题都涉及到多分类,那么今天要讲的softmax回归能解决这类问题。
在Logistic回归中,样本数据的值
,而在softmax回归中
,其中
是类别种数,

本文介绍了softmax回归,作为Logistic回归的扩展,用于解决多分类问题。内容包括softmax回归的模型构建、概率表达式、对数似然函数、参数更新及权重衰减项的添加,以确保优化过程的可行性。
最低0.47元/天 解锁文章
1444

被折叠的 条评论
为什么被折叠?



