softMax适合多分类,本质就是一组概率和为1的一个列表
当我们初始化一个矩阵为(2,3,4)的三维Tensor张量,在不同的维度进行softMax运算的时候,不会改变原始数据的维度,其运算逻辑如下:

当dim=-1
就是第三个维度进行softmax

就是每一行的数拿去softMax,其概率和为1:

当dim=-2时,选取的是第二个维度

进行计算后,得到的如图

红色方框内的每个值都为1
当dim = -3 时表示最外层进行softMax:

颜色相同的放进去运算算出的结果和为1
softMax适合多分类,本质就是一组概率和为1的一个列表
当我们初始化一个矩阵为(2,3,4)的三维Tensor张量,在不同的维度进行softMax运算的时候,不会改变原始数据的维度,其运算逻辑如下:

当dim=-1
就是第三个维度进行softmax

就是每一行的数拿去softMax,其概率和为1:

当dim=-2时,选取的是第二个维度

进行计算后,得到的如图

红色方框内的每个值都为1
当dim = -3 时表示最外层进行softMax:

颜色相同的放进去运算算出的结果和为1
2368

被折叠的 条评论
为什么被折叠?