斜率小于0的连线数量,逆序对

原创 2017年08月11日 14:33:05
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 收藏
 关注
二维平面上N个点之间共有C(n,2)条连线。求这C(n,2)条线中斜率小于0的线的数量。
二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y)。例如:(2,3) (3,4) (1,5) (4,6),其中(1,5)同(2,3)(3,4)的连线斜率 < 0,因此斜率小于0的连线数量为2。
Input
第1行:1个数N,N为点的数量(0 <= N <= 50000)
第2 - N + 1行:N个点的坐标,坐标为整数。(0 <= X[i], Y[i] <= 10^9)
Output
输出斜率小于0的连线的数量。(2,3) (2,4)以及(2,3) (3,3)这2种情况不统计在内。

Input示例

4
2 3
3 4
1 5
4 6
Output示例
2
    一眼看去,这道题便可以想到用n!算法来解,两层循环判断两点之间是否斜率小于零,但一看N=50000的数据范围,就应该想到用更优的算法,譬如说n log n的

    将样例画在坐标系中,发现如果两点之间斜率小于0的话,必定是一个点在另外一个点的右下方,举个例子(x1,y1)(x2,y2)两个点,保证x1<x2,则当且仅当y1>y2时,两点连线斜率小于0,由此我们先可以对x进行排序,然后在求(y1>y2)这样的数对,这就是传说中的逆序对,当然可能会出现x坐标相同的情况,这在下面的代码注释中会讲到处理方法:(贴上一段很丑但不难理解的代码)

 

#include
#define N 50010
using namespace std;
int a[N],b[N],ans;
void quicksort(int l,int r){
	int i=l,j=r,mid=a[(l+r)>>1],md=b[(l+r)>>1];
    do{
    	while ((a[i]md))) i++;
    	while ((a[j]>mid)||((a[j]==mid)&&(b[j]>1;
	mergesort(l,mid);mergesort(mid+1,r);
	merge(l,mid,r);
}
int main(){
	int n;
	scanf("%d",&n);
	for (int i=1;i<=n;i++) scanf("%d%d",&a[i],&b[i]);
	quicksort(1,n);
	ans=0; 
	int l;
	for (int i=1;i<=n;i++){
		if (a[i]==a[i-1]) ans-=i-l; else l=i;
	}/*这就是处理x相同的方法了,如果x相同,因为已经按照y从大到小排序,所以对于每一组x相同的坐标集合,
	在接下来的归并排序中它们会产生Σ(i-l)的逆序对(i代表这个坐标的编号,l代表在这个x相同的坐标集合中,第一个坐标的编号),
	将这些减掉之后,就不用担心重复啦!!*/
	mergesort(1,n);
	printf("%d\n",ans);
}

斜率小于0的连线数量-归并排序

题目: 二维平面上N个点之间共有C(n,2)条连线。求这C(n,2)条线中斜率小于0的线的数量。 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y)。例如:(2,3) (3,4)...
  • zhang20072844
  • zhang20072844
  • 2013年10月31日 21:09
  • 1636

Bresenham画直线,任意斜率

function DrawLineBresenham(x1,y1,x2,y2) %sort by x,sure x1x2 tmp=x1; x1=x2; x2=tmp; ...
  • u011044759
  • u011044759
  • 2014年03月24日 10:38
  • 1259

用递归方式实现将一个非负整数逆序输出

题目描述:用递归技术实现将输入的小于32768的非负整数逆序输出。如输入123,则输出321。 分析:尽管本题要处理的是“数”,但我们可以按照非数值问题进行分析,并建立相应的递归算法。第一步,先...
  • xiaojinzichen
  • xiaojinzichen
  • 2015年07月23日 09:54
  • 2576

1107 斜率小于0的连线数量 求逆序对

1107 斜率小于0的连线数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 二维平面上N个点之间共有C(n,2)条连线。求...
  • zy704599894
  • zy704599894
  • 2016年12月20日 18:06
  • 171

51nod 40 斜率小于0的连线数量 树状数组

题意:二维平面上n个点,问任意选两个点,其斜率小于0有多少种方案? n 按照X坐标排序 离散化后,对于(a[i],b[i])找到前面有多少个b[j]>b[i]的点 b[j]>b[i] 则...
  • noone0
  • noone0
  • 2018年01月03日 13:15
  • 19

51nod 1107 斜率小于0的连线数量 (树状数组+离线化)

二维平面上N个点之间共有C(n,2)条连线。求这C(n,2)条线中斜率小于0的线的数量。 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y)。例如:(2,3) (3,4) (1,5) (4...
  • h1021456873
  • h1021456873
  • 2015年12月18日 18:05
  • 570

1107 斜率小于0的连线数量

二维平面上N个点之间共有C(n,2)条连线。求这C(n,2)条线中斜率小于0的线的数量。 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y)。例如:(2,3) (3,4) (1,5) (4...
  • qingqiu_WD
  • qingqiu_WD
  • 2018年01月01日 10:41
  • 12

51nod 1107 斜率小于0的连线的数量 (逆序数)

树状数组求逆序数变形题。
  • zuzhiang
  • zuzhiang
  • 2017年11月09日 16:00
  • 46

51NOD 1107 斜率小于0的连线数量 坐标离散化+树状数组

1107 斜率小于0的连线数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 二维平面上N个点之间共有C(n,2)条连线。求这C(n,2)条线中斜率...
  • LuRiCheng
  • LuRiCheng
  • 2016年12月18日 21:17
  • 195

51nod-斜率小于0的连线数量(树状数组+离散化)

1107 斜率小于0的连线数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 二维平面上N个点...
  • haut_ykc
  • haut_ykc
  • 2016年12月20日 16:38
  • 217
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:斜率小于0的连线数量,逆序对
举报原因:
原因补充:

(最多只允许输入30个字)