目录
函数的单调性的判定方法
我们给出定理:
我们给出证明:
例题:
曲线的凹凸性与拐点:
如图所示:
我们可以发现,对于凹的函数的图像,他们的斜率是在增大的,对于凸的图像的斜率是在减小的。
一阶导数表示函数图像的斜率,二阶导数表示函数图像的斜率的变化率,当二阶导数大于0时,表示函数图像的斜率在增加,表示函数图像是凹的,当二阶导数小于0时,表示函数图像的斜率在减小,表示函数图像是凸的。
我们进行证明:
函数的拐点:
如图所示,在x0左侧的图像是凸的,在x0右侧的图像是凹的,我们把函数经过这一点,凹凸性发生改变,这一点就叫做拐点。
所以,我们称:
我们发现,在这一点,函数的斜率的变化率为0,也就是说,函数的拐点对应的点的二阶导数为0.
函数的拐点对应的二阶导数为0,但是二阶导数为0的点并不一定是拐点。
例如:
我们再举一个拐点的二阶导数不为0的点
总结: