函数的单调性与曲线的凹凸性

目录

函数的单调性的判定方法

例题:                                                         

 曲线的凹凸性与拐点:

 函数的拐点:

 总结:


函数的单调性的判定方法

 我们给出定理:

 我们给出证明:

例题:

                                                             

 

 

 

 曲线的凹凸性与拐点:

如图所示:

 

 

 我们可以发现,对于凹的函数的图像,他们的斜率是在增大的,对于凸的图像的斜率是在减小的。

一阶导数表示函数图像的斜率,二阶导数表示函数图像的斜率的变化率,当二阶导数大于0时,表示函数图像的斜率在增加,表示函数图像是凹的,当二阶导数小于0时,表示函数图像的斜率在减小,表示函数图像是凸的。

 我们进行证明:

 

 

 函数的拐点:

 如图所示,在x0左侧的图像是凸的,在x0右侧的图像是凹的,我们把函数经过这一点,凹凸性发生改变,这一点就叫做拐点。

所以,我们称:

 我们发现,在这一点,函数的斜率的变化率为0,也就是说,函数的拐点对应的点的二阶导数为0.

函数的拐点对应的二阶导数为0,但是二阶导数为0的点并不一定是拐点。

例如:

 

 

 

 

 我们再举一个拐点的二阶导数不为0的点

 

 总结:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值