Sklearn 快速入门

本文是Sklearn的快速入门教程,介绍了Sklearn的基本概念,包括分类、回归、聚类等机器学习方法。文章阐述了选择模型的流程,并通过Iris数据集展示了模型的应用,包括数据准备、模型训练和预测过程。

学习资料:大家可以去莫烦的学习网站学到更多的知识。

本文结构:
  • Sklearn 简介
  • 选择模型流程
  • 应用模型

Sklearn 简介

Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一.

Sklearn 包含了很多种机器学习的方式:

  • Classification 分类
  • Regression 回归
  • Clustering 非监督分类
  • Dimensionality reduction 数据降维
  • Model Selection 模型选择
  • Preprocessing 数据预处理

选择模型流程

学习 Sklearn 时,不要直接去用,先了解一下都有什么模型方法,然后选择适当的方法,来达到你的目标。

Sklearn 官网提供了一个流程图,蓝色圆圈内是判断条件,绿色方框内是可以选择的算法:

从 START 开始,首先看数据的样本是否 >50<

### sklearn入门教程与基本用法 #### 什么是sklearn? Scikit-learn(简称sklearn)是一个强大的Python机器学习库,广泛应用于数据挖掘、数据分析和预测建模等领域[^1]。它不仅提供了多种监督学习和无监督学习算法,还包含了用于数据预处理、特征提取、模型选择和评估等功能的工具。 --- #### 如何安装sklearn? 为了使用sklearn,需先完成其安装过程。以下是具体操作: 1. **准备工作** 确保已安装Python环境(推荐版本为3.7及以上),并满足依赖项的要求:NumPy(>= 1.8.2)和SciPy(>= 0.13.3)[^4]。 2. **安装命令** 如果使用`pip`作为包管理器,则运行以下命令: ```bash pip install -U scikit-learn ``` 若采用Anaconda发行版,可执行如下指令: ```bash conda install scikit-learn ``` 3. **验证安装成功** 执行以下代码片段以确认安装是否正常: ```python import sklearn print(sklearn.__version__) ``` --- #### 数据准备与加载 在实际应用中,通常需要从外部文件或内置数据集中获取数据。例如,可以通过以下方式加载著名的鸢尾花数据集: ```python from sklearn.datasets import load_iris data = load_iris() X, y = data.data, data.target print(f"Features shape: {X.shape}, Target shape: {y.shape}") ``` 此部分展示了如何访问数据及其标签[^3]。 --- #### 数据分割与预处理 对于大多数机器学习任务而言,合理分配训练集与测试集至关重要。此外,标准化或归一化数值范围有助于提升某些算法的表现效果。 ```python from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征缩放 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) ``` 上述代码实现了基于标准差的方法对输入变量进行调整[^2]。 --- #### 构建线性回归模型 下面展示了一个简单的例子——利用线性回归拟合目标值的过程。 ```python from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score model = LinearRegression() model.fit(X_train_scaled, y_train) # 测试阶段 predictions = model.predict(X_test_scaled) mse = mean_squared_error(y_test, predictions) r2 = r2_score(y_test, predictions) print(f"MSE: {mse:.2f}, R² Score: {r2:.2f}") ``` 此处计算均方误差(MSE)及决定系数(R²),从而衡量预测精度[^2]。 --- #### 模型评估之交叉验证 除了单独划分训练/测试子集外,还可以借助k折交叉验证进一步检验泛化能力。 ```python from sklearn.model_selection import cross_val_score cv_scores = cross_val_score(model, X, y, cv=5, scoring='neg_mean_squared_error') mean_cv_mse = -np.mean(cv_scores) print(f"Mean Cross-Validated MSE: {mean_cv_mse:.2f}") ``` 该段脚本说明了通过多次迭代平均得出更稳健的结果[^5]。 --- #### 总结 以上内容涵盖了sklearn的基础概念、安装指南以及典型应用场景下的实现细节。希望可以帮助初学者快速上手这一优秀的开源软件! ---
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值