大千世界中存在着大量与时间序列(time series)有关的数据,例如股票价值的波动、GDP的历史数据等等。时间序列分析是计量经济学、统计学、机器学习、数据挖掘的等数据科学领域的重要研究方向。在传统的经济学研究中,建立回归模式时,需要着重考虑自变量与因变量之间的内在联系,但即使做了反复的论证,也不能排除其他未纳入考虑因素的影响。由此而建立的计量模型,总是难免会有瑕疵。而时间序列则不然,因为模型中考虑的是序列的历史,在此类模型中,我们认为如果能够了解时间序列的随机结构,就可以对该时间序列的未来值进行预测。
通常的机器学习书籍或教材往往侧重“分类”模型,而对于回归则一言以蔽之。但在我已经出版的多本机器学习书籍中,都着意增加了介绍回归模型的篇幅。一方面,线性回归多元线性回归逻