时间序列分析之AR、MA、ARMA、ARIMA详解(1)

大千世界中存在着大量与时间序列(time series)有关的数据,例如股票价值的波动、GDP的历史数据等等。时间序列分析是计量经济学、统计学、机器学习、数据挖掘的等数据科学领域的重要研究方向。在传统的经济学研究中,建立回归模式时,需要着重考虑自变量与因变量之间的内在联系,但即使做了反复的论证,也不能排除其他未纳入考虑因素的影响。由此而建立的计量模型,总是难免会有瑕疵。而时间序列则不然,因为模型中考虑的是序列的历史,在此类模型中,我们认为如果能够了解时间序列的随机结构,就可以对该时间序列的未来值进行预测。

通常的机器学习书籍或教材往往侧重“分类”模型,而对于回归则一言以蔽之。但在我已经出版的多本机器学习书籍中,都着意增加了介绍回归模型的篇幅。一方面,线性回归\rightarrow多元线性回归\rightarrow

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值