引言
数学无疑是现代数字图像处理技术的一个重要基石,一些效果显著的同时也非常popular的图像处理技术中大量地借鉴和利用了经典数学理论中的一些著名的成果。尽管这些经典数学理论在其原有场景中的意义与其在图像处理技术中的应用二者之间的关系并没有那么obvious!泊松方程(Poisson Equation)在泊松图像编辑(Poisson Image Editing)以及泊松融合(Poisson Matting)中的应用就是一个典型的例子。
本文介绍了泊松方程在数字图像处理中的应用,包括泊松图像编辑和泊松融合。通过对经典物理问题的解析,推导出泊松方程,并阐述其如何在保持图像纹理连续性的同时实现图像合成的无缝融合。泊松方程为解决图像合成中的边界问题提供了理论基础,使得合成图像更加自然。
引言
数学无疑是现代数字图像处理技术的一个重要基石,一些效果显著的同时也非常popular的图像处理技术中大量地借鉴和利用了经典数学理论中的一些著名的成果。尽管这些经典数学理论在其原有场景中的意义与其在图像处理技术中的应用二者之间的关系并没有那么obvious!泊松方程(Poisson Equation)在泊松图像编辑(Poisson Image Editing)以及泊松融合(Poisson Matting)中的应用就是一个典型的例子。
1210
1709
2531
3855