Keras实例教程(2)

本文是Keras实例教程的第二部分,主要介绍如何使用Keras对MNIST数据集的手写数字进行识别。首先,导入必要的库和数据集,然后将二维图像转换为一维向量并进行像素值归一化。接着,对标签进行one-hot编码。通过模型训练后,评估模型性能,并展示模型对测试图像的预测结果。
摘要由CSDN通过智能技术生成

这次我们要执行的任务和《 基于Softmax实现手写数字识别 》中所描述的基本一致,也就是设法对MINST数据集中的手写数字图片进行识别。如果你通过阅读之前的文章已经对当前问题有所了解,那么也应该知道这其实是一个分类任务,也就是将每张图片分入0~9这个十个类别中。当然首先还是导入各种所需的package以及数据集:

import numpy as np
import random
import keras
import matplotlib.pyplot as plt
%matplotlib inline

from keras.datasets import mnist
from keras.models import Sequential, Model
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import RMSprop
from keras.utils import np_utils

(X_train, y_train), (X_test, y_test) = mnist.load_data()

print(X_
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值