image process
文章平均质量分 65
aban-mtd
真诚、负责、踏实
展开
-
最优化方法在图像处理中的应用【3】
今天起得很晚,其实跟往常差不多,只是今天感觉到了而已。今天只有一点想分享下,这样写并不是因为我知道很多,想分享的太少,实际上我只是看了这么一点!!我们要学习的是凸优化是吧,那我们正在搞的是凸集,我们已经学习过他的定义了,可是当我们判断一个集合是不是凸集的时候,只使用定义仿佛很困难,所以牛们就接着研究啊,所以就有了相关的一些性质啊定理啊,今天呢,我告诉你们一个定理!看!两个凸集的交集原创 2013-09-09 19:53:37 · 2181 阅读 · 0 评论 -
最优化方法在图像处理中的应用【1】
引言这篇文章只是做些介绍,以后好知道将来会怎么学习这些方面的知识,另外还有一些英文单词的记录,以便将来能够使用来写点文章,吹吹牛逼。如果你也想跟着学习的话,欢迎跟帖奥。简介这门课程中我们学习的都是convex optimization problem,就是凸优化问题的求解问题。注意是“求解”问题。而且每种方法可能都有一些限制的条件,很多工科的学生都喜欢拿来就用,除了问题再说原创 2013-09-02 20:01:23 · 4640 阅读 · 0 评论 -
最优化方法在图像处理中的应用【2】
今天要讨论的内容是我们要开始学习的基础,我想将这些基本概念好好描述下,以便于将来使用啊。本次讨论的主题是Convex Sets(凸集)1 affine and convex sets (仿射集和凸集)1.1 Affine set先看看line through x1 x2: all points x = θ•x1+(1-θ)x2 (θ belongs to R)这里x1和x2都是原创 2013-09-05 17:19:38 · 6518 阅读 · 2 评论 -
最优化方法在图像处理中的应用【5】
好吧,我想理解下Convex function(凸函数)。定义!A function f : R^n -> R is convex if dom f is a convex set and if for all x,y belongs to dom f and theta with 0 f(theta*x+(1-原创 2013-09-23 21:34:35 · 3473 阅读 · 1 评论 -
实对称矩阵为正定矩阵的一个充分必要条件
本文是为了在学习凸优化的时候遇到的一个问题展开讨论的。目的是能够明白凸优化的理论基础,或者尽可能的明白它的理论基础。1,对称矩阵的特征值是实数。证明如下:(我是用latex编辑的,这里不能显示公式,所以我只能用图片了。上面的证明可以说明对称矩阵的特征值一定是实数!2、n阶方阵一定有n个特征跟(重跟按重数计算)证明: 设A是一个n阶的方阵,它的特原创 2013-09-26 22:33:50 · 65850 阅读 · 1 评论