今天要讨论的内容是我们要开始学习的基础,我想将这些基本概念好好描述下,以便于将来使用啊。
本次讨论的主题是Convex Sets(凸集)
1 affine and convex sets (仿射集和凸集)
1.1 Affine set
先看看line through x1 x2: all points x = θ•x1+(1-θ)x2 (θ belongs to R)
这里x1和x2都是n维空间中的点,如果用向量表示他们的坐标,他们就是n维向量了。用公式表示出的新的点x就是通过x1和x2这两个点的直线上的点。
what is affine set? affine set is a set of point. Any points on certain given line that through two distinct points in the set belongs to the set.
例如,整个n维空间便是一个affine set. Also, solution set of linear equations {x| Ax = b}. 为什么呢?
证明一下第二个:
如果方程组没有解,那么解集合是空集,我找不到两个向量啊?一个向量都没有啊,怎么来验证满足条件呢?好吧,我只能说规定空集是仿射集。
如果方程组只有一个解,同样不能在它的解集合中找到两个不同的向量,嘿嘿,既然没有就把唯一一个解看成两个不同的向量吧,所以显然它也就属于仿射集了。
如果方程组有无限个解,那么所有解肯定可以被一组线性无关的基础解线性表出,带一遍定义就可以证明出确实解空间是仿射集!!
这时,牛说“conversely, every affine set can be expressed as solution set of linear equations.”
1.2 Convex Set
what is line segment?
Line segment between x1 and x2 : all points x = θ•x1+(1-θ)x2 (θ belongs to [0,1])
What is convex set?
convex set: contains line segment between any two points in the set.
包含边界的圆饼的所有点就是一个凸集。
1.3 Convex combination and convex hull
Convex combination of x1, ..., xk: any point x of the form x = θ1•x1 + θ2•x2 + ... + θk•xk
θ1+θ2+...+θk = 1,