最优化方法在图像处理中的应用【2】

本文深入探讨了图像处理中的基础概念——仿射集和凸集,包括它们的定义、性质和相关概念,如线性组合、凸组合、凸壳、凸锥、超平面、半空间、欧几里得球和椭球等。这些理论对于理解和优化图像处理算法至关重要。
摘要由CSDN通过智能技术生成

今天要讨论的内容是我们要开始学习的基础,我想将这些基本概念好好描述下,以便于将来使用啊。

本次讨论的主题是Convex Sets(凸集)

1 affine and convex sets (仿射集和凸集)

1.1 Affine set

先看看line through x1 x2: all points x = θ•x1+(1-θ)x2 (θ belongs to R)

这里x1和x2都是n维空间中的点,如果用向量表示他们的坐标,他们就是n维向量了。用公式表示出的新的点x就是通过x1和x2这两个点的直线上的点。

what is affine set? affine set is a set of point. Any points on certain given line that through two distinct points in the set belongs to the set. 

例如,整个n维空间便是一个affine set. Also, solution set of linear equations {x| Ax = b}. 为什么呢?

证明一下第二个:

如果方程组没有解,那么解集合是空集,我找不到两个向量啊?一个向量都没有啊,怎么来验证满足条件呢?好吧,我只能说规定空集是仿射集。

如果方程组只有一个解,同样不能在它的解集合中找到两个不同的向量,嘿嘿,既然没有就把唯一一个解看成两个不同的向量吧,所以显然它也就属于仿射集了。

如果方程组有无限个解,那么所有解肯定可以被一组线性无关的基础解线性表出,带一遍定义就可以证明出确实解空间是仿射集!!

这时,牛说“conversely, every affine set can be expressed as solution set of linear equations.”


1.2 Convex Set 

what is line segment?

Line segment between x1 and x2 : all points x = θ•x1+(1-θ)x2 (θ belongs to [0,1])

What is convex set?

convex set: contains line segment between any two points in the set. 

包含边界的圆饼的所有点就是一个凸集。



1.3 Convex combination and convex hull

Convex combination of x1, ..., xk: any point x of the form x = θ1•x1 + θ2•x2 + ... + θk•xk

θ1+θ2+...+θk = 1,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值