九度oj 题目1144:Freckles

该博客讲述了关于《迪克·范·戴克秀》中的一集,里奇试图通过连接父亲背部的斑点形成自由钟图案的故事。内容涉及到如何以最小的墨水量将斑点用直线连成一幅完整的图,使得所有斑点之间相互可达。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

    In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through. 
    Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.

输入:

    The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.

输出:

    Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.

样例输入:
3
1.0 1.0
2.0 2.0
2.0 4.0
样例输出:
3.41

把点抽象成图,遍历所有点连成边,再用并查集模拟kruskal算法

#include<iostream>
#include<algorithm>
#include<cmath>
#include<iomanip>

using namespace std; 

struct Node {  //保存节点 
        int x;
        int y;
        double cost;
};

struct Point {
       double xa, xb;
       double distance( Point B) {
       double temp = (xa-B.xa)*(xa-B.xa) + (xb-B.xb)*(xb-B.xb);
       return sqrt(temp);
}
       };
Point p[101];
int root[101];
Node node[6000]; //所有边集 

int findroot(int a)  //寻找根节点 
{
        if (root[a] == -1) 
            return a;
        else {
             int temp = findroot(root[a]); //压缩路径 
             root[a] = temp;
             return temp;
        }
}

int comp(const Node &n1, const Node &n2) {
        return n1.cost < n2.cost;
}



int main()
{
       int i, j, n;
       while (cin >> n)  {
           for ( i=1; i<=n; ++i) {
               cin >> p[i].xa >> p[i].xb;
                 root[i] = -1; //初始n个节点各为一集合 
           }//for
           int size = 0; //抽象出边的总数 
           for (i=1; i<=n; i++) {
              for ( j=i+1; j<=n; ++j) {
                  node[size].x = i;
                  node[size].y = j;
                  node[size].cost = p[i].distance(p[j]);
                  ++size;
              }
           }  
             
           sort (node, node+size, comp); //边权小的在前先选 
           double sum = 0;
           int  fa , fb;
           
           for(i=1; i<=size; ++i) {
              fa  = findroot(node[i].x);
              fb  = findroot(node[i].y);
              if (fa != fb) {  //合并集合 
                 root[fa] = fb;
                 sum += node[i].cost;
              }//if

           }//for
                cout << fixed << setprecision(2) << sum << endl;
    } //while  
        return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值