- 题目描述:
-
In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through.
Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.
- 输入:
-
The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.
- 输出:
-
Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.
- 样例输入:
-
3 1.0 1.0 2.0 2.0 2.0 4.0
- 样例输出:
-
3.41
把点抽象成图,遍历所有点连成边,再用并查集模拟kruskal算法
#include<iostream>
#include<algorithm>
#include<cmath>
#include<iomanip>
using namespace std;
struct Node { //保存节点
int x;
int y;
double cost;
};
struct Point {
double xa, xb;
double distance( Point B) {
double temp = (xa-B.xa)*(xa-B.xa) + (xb-B.xb)*(xb-B.xb);
return sqrt(temp);
}
};
Point p[101];
int root[101];
Node node[6000]; //所有边集
int findroot(int a) //寻找根节点
{
if (root[a] == -1)
return a;
else {
int temp = findroot(root[a]); //压缩路径
root[a] = temp;
return temp;
}
}
int comp(const Node &n1, const Node &n2) {
return n1.cost < n2.cost;
}
int main()
{
int i, j, n;
while (cin >> n) {
for ( i=1; i<=n; ++i) {
cin >> p[i].xa >> p[i].xb;
root[i] = -1; //初始n个节点各为一集合
}//for
int size = 0; //抽象出边的总数
for (i=1; i<=n; i++) {
for ( j=i+1; j<=n; ++j) {
node[size].x = i;
node[size].y = j;
node[size].cost = p[i].distance(p[j]);
++size;
}
}
sort (node, node+size, comp); //边权小的在前先选
double sum = 0;
int fa , fb;
for(i=1; i<=size; ++i) {
fa = findroot(node[i].x);
fb = findroot(node[i].y);
if (fa != fb) { //合并集合
root[fa] = fb;
sum += node[i].cost;
}//if
}//for
cout << fixed << setprecision(2) << sum << endl;
} //while
return 0;
}