hdu 2586 How far away ?(在线LCA+离线Tarjan)

How far away ?

题目链接:How far away ?

题意:一个村子里有n个房子,这n个房子用n-1条路连接起来,接下了有m次询问,每次询问两个房子a,b之间的最短距离是多少。

思路:LCA模板题

代码(离线Tarjan):

#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;

const int maxn=4e4+210;
vector<int>v[maxn],query[maxn],num[maxn],w[maxn];
int pre[maxn],dis[maxn],ans[maxn];
bool vis[maxn];
int n,m;

void Init()
{
    for(int i=1;i<=n;++i)
    {
        v[i].clear();
        query[i].clear();
        num[i].clear();
        w[i].clear();
        pre[i]=i;
        dis[i]=0;
        vis[i]=false;
    }
}

int Find(int x)
{
    if(x!=pre[x])
        pre[x]=Find(pre[x]);
    return pre[x];
}

void join(int x,int y)
{
    int fx=Find(x),fy=Find(y);
    if(fx!=fy)
        pre[fy]=fx;
}

void Tarjan(int rt,int val)
{
    vis[rt]=true;
    dis[rt]=val;
    for(int i=0;i<v[rt].size();++i)
    {
        int tmp=v[rt][i];
        if(!vis[tmp])
        {
            Tarjan(tmp,val+w[rt][i]);
            join(rt,tmp);
        }
    }
    for(int i=0;i<query[rt].size();++i)
    {
        int tmp=query[rt][i];
        if(vis[tmp])
            ans[num[rt][i]]=dis[rt]+dis[tmp]-2*dis[Find(tmp)];
    }
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        Init();
        int x,y,val;
        for(int i=1;i<n;++i)
        {
            scanf("%d%d%d",&x,&y,&val);
            v[x].push_back(y);
            w[x].push_back(val);
            v[y].push_back(x);
            w[y].push_back(val);
        }
        for(int i=1;i<=m;++i)
        {
            scanf("%d%d",&x,&y);
            query[x].push_back(y);
            num[x].push_back(i);
            query[y].push_back(x);
            num[y].push_back(i);
        }
        Tarjan(1,0);
        for(int i=1;i<=m;++i)
            printf("%d\n",ans[i]);
    }
    return 0;
}



这个很简单,时间复杂度O(N+Q),vector可以用邻接表优化一下

大神博客详解:离线Tarjan


代码(在线RMQ+DFS序):

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;

const int maxn=4e4+10;
struct edge
{
    int v,w,next,flag;
} E[maxn<<1];
int first[maxn],val[maxn],dep[maxn],a[maxn<<1],b[maxn],f[maxn<<1][20],lca[maxn<<1][20];
int top,len,n,m;

void dfs(int x,int step,int va)
{
    dep[x]=step;
    a[++top]=x,val[x]=va;
    for(int i=first[x]; ~i; i=E[i].next)
    {
        if(E[i].flag)
            continue;
        E[i].flag=E[i^1].flag=1;
        int v=E[i].v,w=E[i].w;
        dfs(v,step+1,va+w);
        a[++top]=x;
    }
}

void init()
{
    for(int i=1; i<=top; ++i)
    {
        f[i][0]=dep[a[i]];
        lca[i][0]=a[i];
    }
    int s=(int)log2(top*1.0);
    for(int j=1; j<=s; ++j)
    {
        int k=top-(1<<j)+1;
        for(int i=1; i<=k; ++i)
        {
            int x=i+(1<<(j-1));
            if(f[i][j-1]<=f[x][j-1])
            {
                f[i][j]=f[i][j-1];
                lca[i][j]=lca[i][j-1];
            }
            else
            {
                f[i][j]=f[x][j-1];
                lca[i][j]=lca[x][j-1];
            }
        }
    }
}

void add_edge(int u,int v,int w)
{
    E[len].v=v,E[len].w=w,E[len].flag=0,E[len].next=first[u],first[u]=len++;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(b,0,sizeof(b));
        memset(first,-1,sizeof(first));
        scanf("%d%d",&n,&m);
        len=0,top=0;
        int u,v,w;
        for(int i=1; i<n; ++i)
        {
            scanf("%d%d%d",&u,&v,&w);
            add_edge(u,v,w);
            add_edge(v,u,w);
        }
        dfs(1,1,0);
        for(int i=1; i<=top; ++i)
            if(b[a[i]]==0)
                b[a[i]]=i;
        init();
        while(m--)
        {
            scanf("%d%d",&u,&v);
            u=b[u],v=b[v];
            if(u>v)
                swap(u,v);
            int j=(int)log2((v-u)*1.0);
            int i=v-(1<<j)+1;
            int fa=f[u][j]<f[i][j]?lca[u][j]:lca[i][j];
            printf("%d\n",val[a[u]]+val[a[v]]-2*val[fa]);
        }
    }
    return 0;
}



在线算法把一棵树转化为了一维数组, a[] 表示树上的节点在数组中的位置, b[] 表示树上的节点在数组中第一次出现的位置

则任意两个节点i和j,在 [abiabj] 中深度最小的那个节点就是他们的最近公共祖先
预处理的时间复杂度O( nlog2n ),查询O(1)

大神博客详解:求LCA最近公共祖先的在线ST算法

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值