520.Detect Capital(String-Easy)

本文介绍了一种判断字符串中大写字母使用是否合法的方法,并提供了C++和Python两种语言的实现示例。合法条件包括全大写、全小写及仅首字母大写的情况。

转载请注明作者和出处: http://blog.csdn.net/c406495762

Given a word, you need to judge whether the usage of capitals in it is right or not.

We define the usage of capitals in a word to be right when one of the following cases holds:

  • All letters in this word are capitals, like “USA”.
  • All letters in this word are not capitals, like “leetcode”.
  • Only the first letter in this word is capital if it has more than one letter, like “Google”.

Otherwise, we define that this word doesn’t use capitals in a right way.

Example 1:

Input: "USA" 
Output: True

Example 2:

Input: "FlaG" 
Output: False

Note: The input will be a non-empty word consisting of uppercase and lowercase latin letters.

题目:判断字符串大写字母使用的是否合法。合法条件:(1)全为大写字母;(2)全为小写字母;(3)只有首字母大写,其余字母小写。

思路:

a) C++

    初始化一个记录字符串中含有大写字符数量的变量。遍历字符串的每一个字符,如果字符为大写字母,则大写字母计数变量计数一次(加一)。

    合法条件:

  • 大写字母计数变量为0(全为小写字母);
  • 大写字母计数变量为字符串长度(全为大写字母);
  • 大写字母计数变量为1且字符串首字符为大写(只有首字母大写,其余字母小写 )。

b) Python

    Python提供了可以直接调用的API接口:

  • isupper() 方法检测字符串中所有的字母是否都为大写;
  • islower() 方法检测字符串是否由小写字母组成;
  • istitle() 方法检测字符串中所有的单词拼写首字母是否为大写,且其他字母为小写。

代码:

Language : cpp

class Solution {
public:
    bool detectCapitalUse(string word) {
        int cnt = 0;
        for(char c: word) {
            if('Z' - c >= 0){
                cnt++;
            }
        }
        return ((cnt == 0 || cnt == word.length() || (cnt == 1 && 'Z' - word[0] >= 0)));
    }
};

Language : python

class Solution(object):
    def detectCapitalUse(self, word):
        """
        :type word: str
        :rtype: bool
        """
        return word.isupper() or word.islower() or word.istitle()

代码获取:

Github的LeetCode项目

<think>好的,我现在需要帮助用户解决关于使用hb_mapper工具处理ONNX模型和Yolov10-detect.yaml配置文件时的日志分析及问题解决。首先,我得回忆一下用户提供的引用内容,看看有没有相关的信息可以借鉴。 根据用户提供的引用,特别是引用[1]和[3],hb_mapper主要用于模型的编译和检查。引用[1]提到使用hb_mapper makertbin命令时需要指定model-type和config文件,而引用[3]则说明了hb_mapper checker用于检测模型是否包含不支持的算子。用户的问题是关于使用Yolov10-detect.yaml时的日志分析和问题解决,所以我需要围绕这些方面展开思考。 首先,用户可能在运行命令时遇到错误,比如模型转换失败或者配置文件错误。这时候,查看日志文件是关键。用户需要知道日志文件的位置,通常可能在当前目录的log文件夹下,或者在命令输出的提示中。例如,引用[3]中的检查模型命令会生成日志,用户需要检查这些日志中的ERROR或WARNING信息。 然后,考虑配置文件Yolov10-detect.yaml的正确性。用户提供的引用[2]中提到了修改YOLOv5的模型文件,比如调整偏置初始化。这可能意味着配置文件中的参数需要与模型结构匹配,特别是输入尺寸、输出节点名称等是否正确。如果用户使用的是Yolov10,可能需要检查配置文件中的参数是否适配,比如输入分辨率是否为NV12格式,是否指定了正确的预处理方法,如归一化参数是否正确。引用[1]中的示例配置文件是yolov8的,用户需要根据Yolov10的结构调整相应的参数。 接下来是模型支持性问题。引用[3]提到hb_mapper checker可以检测不支持的算子,用户需要先运行这个命令来确保模型的所有算子都被支持。如果发现不支持的层或操作,可能需要修改模型结构或使用自定义算子插件。例如,Yolov10可能引入了新的层,需要确认目标平台(如伯努利2架构)是否支持这些层。 此外,版本兼容性也是一个问题。用户需要确认使用的hb_mapper版本是否支持ONNX的特定版本以及Yolov10的模型结构。如果版本不匹配,可能需要升级工具链或调整模型导出时的设置。引用[1]中的命令使用了onnx作为model-type,用户需要确保导出的ONNX模型符合工具的要求,例如是否包含正确的输入输出节点,是否有动态维度需要固定。 最后,用户可能需要参考官方文档或社区资源。例如,引用[4]提到了百度AI的车牌检测系统,虽然不直接相关,但说明用户可能在使用其他模型时有过类似经验,可以借鉴处理配置和模型转换的步骤。 总结可能的解决步骤:检查日志定位错误,验证配置文件和模型结构,运行模型检查工具,处理不支持的算子,确保版本兼容性,查阅文档和案例。需要将这些步骤详细整理,并给出具体的命令示例,如运行checker的命令,检查输入输出节点的方法,以及修改配置文件的注意事项。同时,提醒用户查看日志中的具体错误信息,以便更精准地解决问题。</think>关于使用$hb\_mapper$工具处理ONNX模型和Yolov10-detect.yaml配置文件的日志分析及问题解决,以下是关键步骤与解决方案: --- ### 一、日志文件定位 1. **默认日志路径** - 执行命令后自动生成日志文件:`./log/hb_mapper_makertbin.log.*` - 若使用docker环境,日志可能位于容器内`/root/hb_mapper/log/`目录[^1] 2. **实时日志查看** ```bash (bpu_docker) $ hb_mapper makertbin --model-type onnx --config Yolov10-detect.yaml 2>&1 | tee build.log ``` --- ### 二、常见问题分析 #### 1. 配置文件错误 - **现象**:`KeyError`或`Missing parameter` - **解决方法**: - 确认YAML文件包含必要参数: ```yaml model_parameters: onnx_model: "yolov10-detect.onnx" output: "yolov10" march: "bernoulli2" # 必须与芯片架构匹配[^3] input_parameters: input_type_rt: "nv12" # 输入数据格式 input_layout_rt: "NHWC" norm_type: "no_preprocess" # 预处理方法需与模型匹配[^1] ``` #### 2. 模型算子不支持 - **现象**:`Unsupported layer: GridSample` - **解决方法**: 1. 运行模型检查命令: ```bash hb_mapper checker --model-type onnx --march bernoulli2 --model yolov10-detect.onnx ``` 2. 若报告不支持的算子,需修改模型结构或添加自定义算子插件[^3] --- ### 三、典型案例解析 #### 案例1:输入尺寸不匹配 - **日志特征**: `Input shape [1,3,640,640] not match expected [1,256,256,3]` - **解决方案**: 1. 在YAML文件中显式声明输入尺寸: ```yaml input_parameters: input_shape: "1,3,640,640" # NCHW格式 ``` #### 案例2:输出节点缺失 - **日志特征**: `Output node 'output0' not found in model` - **解决方案**: 1. 使用Netron工具查看ONNX模型输出节点名 2. 修改YAML配置: ```yaml output_parameters: output_names: ["output0", "output1"] ``` --- ### 四、进阶调试技巧 1. **模型简化** ```bash python -m onnxsim yolov10-detect.onnx yolov10-sim.onnx ``` 2. **版本验证** ```bash hb_mapper --version # 确认版本>=3.5.0 pip list | grep horizon # 检查驱动版本 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jack-Cui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值