GAN眼中的图像翻译(附神奇歌单)

本文总结了GAN在图像翻译领域的常见方法,包括pix2pix、CycleGAN等,探讨了内容一致性和论域一致性对图像翻译的重要性,并分析了各方法在保持这些一致性上的优缺点。同时,文章提到了Face Age-cGAN利用cGAN逆映射的挑战及FaderNets的剥离属性策略。最后,作者分享了一个辅助学习的歌单。
摘要由CSDN通过智能技术生成

这是一篇总结文,总结我看过的几篇用GAN做图像翻译的文章的“套路”。

首先,什么是图像翻译?

为了说清楚这个问题,下面我给出一个不严谨的形式化定义。我们先来看两个概念。第一个概念是图像内容(content)  ,它是图像的固有内容,是区分不同图像的依据。第二个概念是图像域(domain),域内的图像可以认为是图像内容被赋予了某些相同的属性。举个例子,我们看到一张猫的图片,图像内容就是那只特定的喵,如果我们给图像赋予彩色,就得到了现实中看到的喵;如果给那张图像赋予铅笔画属性,就得到了一只“铅笔喵”。喵~

图像翻译是指图像内容从一个域迁移到另一个域可以看成是图像移除一个域的属性 ,然后赋予另一个域的属性 。我们用来表示域和域的图像,图像翻译任务即可以定义为,寻找一个合适的变换使得

当然,还有一种图像翻译,在翻译的时候会把图像内容也换掉,下面介绍的方法也适用于这种翻译,这种翻译除了研究图像属性的变化,还可以研究图像内容的变化,在这里就不做讨论了。

常见的GAN图像翻译方法

下面简单总结几种GAN的图像翻译方法。


  • pix2pix


简单来说,它就是跟cGAN。Generator的输入不再是noise,而是图像。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值