Haar-like特征,即很多人常说的Haar特征,是计算机视觉领域一种常用的特征描述算子。它最早是由Papageorigiou等人用于人脸描述。目前常用的Haar-like特征可以分为三类:线性特征、边缘特征、点特征(中心特征)、对角线特征。如下图所示:

显然,边缘特征有4种:x方向,y方向,x倾斜方向,y倾斜方向;线特征有8种,点特征有2种,对角线特征有1种。每一种特征的计算都是由黑色填充区域的像素值之和与白色填充区域的像素值之和的差值。而计算出来的这个差值就是所谓的Haar-like特征的特征值。
本文详细介绍了Haar-like特征的概念,包括线性、边缘、点和对角线特征的计算方法,以及它们在计算机视觉领域的应用。通过具体实例展示了特征计算过程,并探讨了其在人脸识别等任务中的作用。
1万+

被折叠的 条评论
为什么被折叠?



