点关于直线的距离、垂足、对称点公式

原创 2012年03月31日 11:36:02

        下面通过两种直线方程的形式,求解点关于直线的距离、垂足、对称点公式。

问题描述1:已知点的坐标(x0,y0),直线的方程为Ax+By+C = 0;求点到直线上的距离d、点在直线上的垂足(x, y)、点关于直线的对称点(x’, y‘)。

解决方法:

(1)距离:

         d = ( Ax0 + By0 + C ) / sqrt ( A*A + B*B );

         这个“距离”有符号,表示点在直线的上方或者下方,取绝对值表示欧式距离。

(2)垂足:

         求解两个方程:(a)、Ax + By + C = 0;(b)、(y - y0) / (x - x0) = B / A;

         解得,x = (  B*B*x0  -  A*B*y0  -  A*C  ) / ( A*A + B*B );

                    y  =  ( -A*B*x0 + A*A*y0 - B*C  ) / ( A*A + B*B );

(3)对称点:

         方法一:求解两个方程:(a)、A*( x’+x0 ) / 2 + B*( y‘+y0 ) / 2 + C = 0; (b)、(y’ - y0) / (x‘ - x0) = B / A;

         方法二:把问题转化为求解已知点关于垂足的对称点:

                首先,求出垂足;则x’ = 2*x - x0; y‘ = 2*y - y0;

                解得,x’ = ( (B*B - A*A)*x0 - 2*A*B*y0 - 2*A*C ) / ( A*A + B*B );

                           y‘ = ( -2*A*B*x0 + (A*A - B*B) * y0 - 2*B*C ) / ( A*A+B*B );

         方法三:首先,求一系数k,k = - 2 * (A*x0 + B*y0 + C) / (A*A+B*B);

                 则,   x' = x0 + k * A;

                           y' = y0 + k * B;

                  此证明详见资源:http://download.csdn.net/detail/changbaolong/4196639

        

问题描述2:已知点的坐标(x0,y0),直线上的两点(x1,y1)、(x2,y2);求点到直线上的距离d、点在直线上的垂足(x, y)、点关于直线的对称点(x’, y‘)。

解决方法:

        方法一:把直线化两点式为一般式,则一般式中的A = y2 -y1; B = x1 - x2; C = x2*y1 - x1*y2;带入上面的公式,即可求出相应的距离、垂足、对称点。

        方法二:

(a)距离:

         首先,求出垂足的坐标;

         则d = sqrt( (x - x0) * (x - x0)  +  (y - y0) * (y - y0));

(b)垂足:

         首先,求一系数 k: 设直线的起点和终点分别为A(x1, y1)、B(x2, y2),直线外一点为C(x0, y0),垂足为D;并设k = |AD| / |AB。

         则,k * AB = AD = AC + CD,又 AB * CD= 0;所以,k * AB* AB = AC *AB,故 k =AC * AB / (AB * AB)。

         带入坐标,即得, k = ( (x0- x1) * (x2 - x1) + (y0 - y1) * (y2 - y1) )  / ( (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) ) ;

         则 x = x1 + k*(x2 - x1); y = y1 + k*(y2 - y1);

(c)对称点:

         同问题描述1中的方法。

==========================================================================================================================

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

C语言平面几何10-点到直线的垂点

求点A(x0, y0)到直线Ax+By+C=0的垂点B(x1, y1),满足两个条件:(1)Ax1+By1+C=0,点B在直线上(2)(y1-y0)/(x1-x0) * A/B=1,两线垂直,斜率k1...

三维空间中的旋转变换

1、绕坐标轴旋转的公式:       (1)绕Z轴旋转         (2)绕X轴旋转         (3)绕Y轴旋...

c 空间点到直线的垂足及距离计算

已知条件:已知空间一个点的坐标a(x0,y0,z0),已知空间的另外两个点的坐标b(x1,y1,z1),c(x2,y2,z2),求a点到 b,c两点所在直线的 距离最近的点的坐标 可以说是a点到 过b...
  • JHTPZY
  • JHTPZY
  • 2010-06-30 20:57
  • 1798

空间点到直线垂足坐标的解算方法

假设空间某点O的坐标为(Xo,Yo,Zo),空间某条直线上两点A和B的坐标为:(X1,Y1,Z1),(X2,Y2,Z2),设点O在直线AB上的垂足为点N,坐标为(Xn,Yn,Zn)。点N坐标解算过程如...

hdu 2857(对称点与直线交点问题)

Mirror and Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth...

HDU 2671 Can't be easier 求点关于直线的对称点

/* 显然,如果A,B在直线的同一侧,则min(PA+PB)=dis(A,B), 否则,求出B关于直线的对称点B`,min(PA+PB)=dis(A,B`) */ #include #include ...

tzc3056 点关于直线的对称点

题目链接:  tzc3056 方法:计算几何  注意:本题在输出结果的时候要将数据强制转换成整型,不能用%.0lf输出,否则会WA。 代码: #include #include usi...

输出一点的对称点,两点间的距离

/* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生 * All rights reserved. * 文件名称:  ...

C++第六周任务三设计平面坐标点类,计算两点之间距离、到原点距离、关于坐标轴和原点的对称点等

/* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生 * All rights reserved. * 文件名称:设计...

【任务3】设计平面坐标点类,计算两点之间距离、到原点距离、关于坐标轴和原点的对称点等

* 程序头部注释开始* 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生 * All rights reserved.* 文件名称: * 作 者: ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)