SIFT特征提取分析

SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下:

算法描述

SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果。整个算法分为以下几个部分:

1. 构建尺度空间

这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征

类似图像金字塔的建立,对于一幅图像I,建立其在不同尺度(scale)的图像,也成为子八度,这是为了scale-invariant,也就是在任何尺度都能够有对应的特征点,第一个子八度的scale为原图大小,后面每个scale为原图的1/4,即长宽分别减半进行降采样,构成下一个子八度(高一层金字塔)。


由图片size决定建几个塔,每塔几层图像(一般3-5)0塔的第0层是原始图像(或你double后的图像),往上每一层是对其下一层进行Laplacian变换(高斯卷积,其中sigma值渐大,例如可以是sigma, k*sigma, k*k*sigma…),直观上看来越往上图片越模糊。塔间的图片是降采样关系,例如1塔的第0层可以由0塔的第3down sample得到,然后进行与0塔类似的高斯卷积操作。

2. LoG近似DoG找到关键点

使用Laplacian of Gaussian能够很好地找到找到图像中的兴趣点,但是需要大量的计算量,所以使用Difference of Gaussian图像的极大极小值近似寻找特征点.DOG算子计算简单,是尺度归一化的LoG算子的近似,有关DOG寻找特征点的介绍及方法详见http://blog.csdn.net/abcjennifer/article/details/7639488极值点检测用的Non-Maximal Suppression


3. 除去不好的特征点

通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度),同时去除低对比度的关键点和不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应),以增强匹配稳定性、提高抗噪声能力,在这里使用近似Harris Corner检测器。

边缘响应的去除

一个定义不好的高斯差分算子的极值在横跨边缘的地方有较大的主曲率,而在垂直边缘的方向有较小的主曲率。主曲率通过一个2x2 的Hessian矩阵H求出:


导数由采样点相邻差估计得到。

D的主曲率和H的特征值成正比,令α为较大特征值,β为较小的特征值,则

令α=γβ,则


 (r + 1)2/r的值在两个特征值相等的时候最小,随着r的增大而增大,因此,为了检测主曲率是否在某域值r下,只需检测

在Lowe的文章中,取r=10。


4. 给特征点赋值一个128维向量描述子

上一步中确定了每幅图中的特征点,为每个特征点计算一个方向,依照这个方向做进一步的计算, 利用关键点邻域像素的梯度方向分布特性为每个关键点指定方向参数,使算子具备旋转不变性。


为(x,y)处梯度的模值和方向公式。其中L所用的尺度为每个关键点各自所在的尺度。

在实际计算时,我们在以关键点为中心的邻域窗口内采样,并用直方图统计邻域像素的梯度方向。梯度直方图的范围是0~360度,其中每45度一个柱,总共8个柱。 直方图的峰值则代表了该关键点处邻域梯度的主方向,即作为该关键点的方向



由梯度方向直方图确定主梯度方向

该步中将建立所有scale中特征点的描述子(128维)

计算keypoint周围的16*16的window中每一个像素的梯度,而且使用高斯下降函数降低远离中心的权重。


在每个4*4的1/16象限中,通过加权梯度值加到直方图8个方向区间中的一个,计算出一个梯度方向直方图。


Figure.16*16的图中其中1/4的特征点梯度方向及scale,右图为其加权到8个主方向后的效果。
这样就可以对每个feature形成一个4*4*8=128维的描述子,每一维都可以表示4*4个格子中一个的scale/orientation.

5. 根据SIFT进行Match

生成了A、B两幅图的描述子,(分别是k1*128维和k2*128维),就将两图中各个scale(所有scale)的描述子进行匹配,匹配上128维即可表示两个特征点match上了。

当两幅图像的SIFT特征向量生成后,下一步我们采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。取图像1中的某个关键点,并找出其与图像2中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点。降低这个比例阈值,SIFT匹配点数目会减少,但更加稳定。

 

实验结果:





本文源自:http://blog.csdn.net/abcjennifer/article/details/7639681


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: SIFT(尺度不变特征转换)是一种图像特征提取算法,而RANSAC(随机抽样一致性)是一种用于剔除误匹配点的算法。下面是关于如何在OpenCV 3.0中实现这两种算法的简要步骤。 首先,打开一个图像并加载其所需的库: ``` import cv2 import numpy as np ``` 然后,我们可以从图像中提取SIFT特征: ``` # 加载图像 img = cv2.imread('image.jpg',0) # 创建SIFT对象 sift = cv2.xfeatures2d.SIFT_create() # 检测并计算SIFT特征 keypoints, descriptors = sift.detectAndCompute(img, None) ``` 接下来,我们可以使用RANSAC算法来剔除误匹配点: ``` # 创建FLANN匹配器对象 FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) # 在两幅图像之间匹配特征点 matches = flann.knnMatch(descriptors1, descriptors2, k=2) # 进行RANSAC过滤 good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) # 绘制匹配结果 result = cv2.drawMatches(img1, keypoints1, img2, keypoints2, good_matches, None, flags=2) cv2.imshow('Matches', result) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,我们首先创建了一个FLANN(快速最近邻搜索)匹配器对象,然后使用`knnMatch`函数在两幅图像之间进行特征点的匹配。最后,我们使用RANSAC算法对匹配点进行过滤,并将结果绘制出来。 以上是在OpenCV 3.0中实现SIFT特征提取和RANSAC误匹配点剔除的简要步骤。实际操作中还可以进行更详细的参数设置和优化,以便得到更好的匹配结果。 ### 回答2: OpenCV 3.0 是一个非常强大的计算机视觉库,它提供了许多功能来处理图像处理和计算机视觉任务。其中包括使用SIFT算法进行特征提取和使用RANSAC算法进行误匹配点的剔除。 首先,SIFT(尺度不变特征变换)是一种用于在图像中检测和描述关键点的算法。在OpenCV 3.0中,你可以使用`cv2.xfeatures2d.SIFT_create()`来创建一个SIFT对象。然后,你可以使用`detectAndCompute()`方法来检测并计算图像的关键点和特征描述符。通过调用这个方法,你将得到检测到的关键点和对应的特征描述符。 接下来,我们可以使用RANSAC(随机样本一致性)算法来剔除误匹配点。RANSAC算法能够通过随机选择样本子集并估计模型参数来寻找数据中的局内点。在OpenCV 3.0中,你可以使用`cv2.RANSAC`作为参数来创建一个RANSAC对象。然后,你可以使用`findHomography()`方法来计算通过RANSAC算法筛选后的匹配点之间的透视变换矩阵。这个矩阵可以用来剔除误匹配点。 总结一下,OpenCV 3.0可以通过`cv2.xfeatures2d.SIFT_create()`方法进行SIFT特征提取,并使用RANSAC算法来剔除误匹配点。这两个功能都是非常有用的计算机视觉任务,能够帮助我们更好地处理和分析图像。 ### 回答3: 在OpenCV 3.0中,可以使用SIFT算法进行图像的特征提取,并采用RANSAC算法剔除误匹配点。 SIFT(Scale-Invariant Feature Transform)特征提取算法是一种基于尺度空间的特征提取方法,它可以提取图像中的稳定特征点和其对应的描述子。在OpenCV中,可以使用sift.detectAndCompute()函数来提取图像的SIFT特征点和描述子。 RANSAC(Random Sample Consensus)算法是一种鲁棒的参数估计算法,它可以从一组数据中剔除异常点,从而得到准确的模型参数。在特征匹配中,可以使用RANSAC算法来剔除误匹配点,以提高匹配的准确性。 具体实现的步骤如下: 1. 导入OpenCV和Numpy库,并读取需要进行特征匹配的两幅图像。 ```python import cv2 import numpy as np img1 = cv2.imread('image1.jpg', 0) img2 = cv2.imread('image2.jpg', 0) ``` 2. 创建SIFT对象,并使用sift.detectAndCompute()函数提取图像的SIFT特征点和描述子。 ```python sift = cv2.SIFT_create() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) ``` 3. 使用FLANN匹配器对两幅图像的描述子进行匹配。 ```python FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) ``` 4. 运用RANSAC算法剔除误匹配点。 ```python good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) ``` 通过以上步骤,我们可以得到经过RANSAC算法筛选后的匹配点,并且可以通过M矩阵获取图像的对应关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值