2008年,中小企业将成存储厂商的主战场?

 
信息爆炸的时代,中小企业面临着与大企业同样的问题:如何处理海量数据?随时都在增长的信息包括丰富功能文档、无穷无尽的电子邮件、音频和视频文件、新的数据密集型应用以及信息必须遵从众多政府法规,这都不得不让众多中小企业关注信息存储市场。
 
近几年,中国中小企业的IT支出比大型企业的增长速度更加迅猛,从全球范围来看,面对的中小企业市场未来十年服务器出货量将是今天的6倍,而存储出货量将是今天的69倍。同时市场上定价在10000~15000美元的存储产品的采购量年均复合增长率将达到48%。另据统计,约有72%的小型企业和43%的中型企业使用直连存储方案,伴随中小企业数据量的大幅增长和企业的发展,原先存在的直连存储方式,已经无法满足信息网络化的发展,这同时也制约了中小企业的发展。同时直连为主的分布式备份环境已经无法有效满足用户对于数据有效保护和灾难快速恢复的新需求。
 
根据今年上半年的赛迪报告,今天中国的中小企业又表现出了如下的特点,比如行业覆盖领域广、地区分布范围大且分散;企业规模小、IT资金投入有限;由于自 身资源限制,中小企业都缺少专业的IT技术人员并且IT预算有限。在数据管理和技术支持上存在着不规范和不完善的现状。同时他们对存储产品在节能和空间利用率方面也有着特别的需求。此外,中小企业在采购存储产品时,一方面要考虑到企业的应用现状,另一方面还要满足未来业务的发展。
 
简捷(simplicity)、节省(saving)、扩展(scalability)和服务(service)将是影响中小企业采购存储产品的四个核心因素。根据中国目前中小企业的发展特点,这四个核心因素可以解释为:操作和管理简单的存储产品使得中小企业在数据维护和使用上变的简捷;绿色低功耗和虚拟化的解决方案可以帮助中小企业节省IT投入;灵活易扩展的存储平台可以满足中小企业业务变化及快速增长的需求;完善的地区覆盖和专业的服务支持网络可以帮助中小企业更好地发挥存储的商业价值。
 
目前几大存储设备厂商都相继推出自己的面向中小企业的存储产品,EMC和IBM是目前世界范围也是中国国内最有影响力的两个厂商,目前EMC的大中华区总裁叶城辉在刚刚推出的9月新品中说:“EMC在存储市场不做第一名都是很难的事情。”而IBM布局中小企业的市场也悄然启动,IBM系统存储部大中华区总经理侯淼先生表示:“中小企业存储是IBM系统存储部今后的重点发展领域之一。IBM将通过三大部署,从渠道、产品、技术和解决方案全面拓展中小企业存储市场。IBM中小企业存储市场的三大策略是:第一,稳固在中国存储市场第一的市场位置;并保持中小企业业务在IBM整体存储业务中增长速度第一的强劲势头;第二,借助IBM蓝天计划,扩展合作伙伴数量并加强区域覆盖能力;第三,保持在产品技术和解决方案上的创新能力。”
    看来,在存储市场,中小企业的市场争夺在明年可能会成为看点。原来关注这块市场较多的HP和华为,或许已经开始感受到了IBM和EMC的巨大压力。
 


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值