温度篇
前面已经讲了苏州的天气特点,还是用相同的数据,做接下来的苏州气温特点的分析预测,是的预测在这里!
首先看下2011年到2015年苏州整体的温度表现是什么样的。
plot(suzhou$highestTemp,type="l",col="red",main="苏州2011-2015年气温图",xlab="时间轴",ylab="温度℃")
lines(suzhou$lowestTemp,type="l",col="blue")
legend("topright",c("最高气温","最低气温"),col=c("red","blue"),lty=1)
红色是最高气温,蓝色是最低气温,年度季节性的特征很明显。每年都是先升再降,7、8月份是温度最高的时间,1、2月是温度最低时间。
因为时间太长,横轴没有具体的对应点。
同样,按月取平均值,再来看整体的表现。
avgTemper <-numeric(0)#月平均气温
diffTemper <-numeric(0)#月最高温差
length(avgTemper)<- 48
length(diffTemper)<- 48
for(i in2011:2014){
for(j in 1:12){
print((i-2011)*12+j)
avgTemper[(i-2011)*12+j]<-mean(c(suzhou$highestTemp[grep(paste(i,"-",j,"-",sep=""),suzhou$date)],suzhou$lowestTemp[grep(paste(i,"-",j,"-",sep=""),suzhou$date)]),na.rm=TRUE)
diffTemper[(i-2011)*12+j]<- max(suzhou$highestTemp[grep(paste(i,"-",j,"-",sep=""),suzhou$date)]-suzhou$lowestTemp[grep(paste(i,"-",j,"-",sep=""),suzhou$date)],na.rm=TRUE)
}
}
avgTemperTS<- ts(avgTemper,frequency=12,start=c(2011,1))
plot.ts(avgTemperTS,main="苏州2011-2014年月平均气温图",xlab="时间",ylab="月平均温度℃")
四年月平均气温有一个很明显的周期性规律,明显能看出来2013年7、8月份气温高于其他三年。

该文利用R语言分析2011-2015年苏州气温,发现季节性明显,7、8月高温,1、2月低温。2013年尤为炎热,温差在3、4月最大。通过HoltWinters指数平滑方法进行时间序列预测,预测值与实际值趋势接近,但偏低。文中还探讨了天气预报的制作原理。
最低0.47元/天 解锁文章
680





