【bzoj3224】普通平衡树

这篇博客介绍了如何实现一种平衡树数据结构,用于维护数的插入、删除、查询排名、查询特定数值、求前驱和后继等操作。通过示例输入和输出展示其功能,并提供了题解和代码实现。

Description

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:
1. 插入x数
2. 删除x数(若有多个相同的数,因只删除一个)
3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
4. 查询排名为x的数
5. 求x的前驱(前驱定义为小于x,且最大的数)
6. 求x的后继(后继定义为大于x,且最小的数)

Input

第一行为n,表示操作的个数,下面n行每行有两个数opt和x,opt表示操作的序号(1<=opt<=6)

Output

对于操作3,4,5,6每行输出一个数,表示对应答案

Sample Input

10
1 106465
4 1
1 317721
1 460929
1 644985
1 84185
1 89851
6 81968
1 492737
5 493598

Sample Output

106465
84185
492737

HINT

1.n的数据范围:n<=100000

2.每个数的数据范围:[-1e7,1e7]

数据如下http://pan.baidu.com/s/1jHMJwO2

Source




【题解】

打了一天的小板子。。。

【代码】

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAXN 1000000
int ch[MAXN][2],f[MAXN],size[MAXN],cnt[MAXN],key[MAXN];
int sz,root;
inline void clear(int x){
	ch[x][0]=ch[x][1]=f[x]=size[x]=cnt[x]=key[x]=0;
}
inline bool get(int x){
	return ch[f[x]][1]==x;
}
inline void update(int x){
	if (x){
		size[x]=cnt[x];
		if (ch[x][0]) size[x]+=size[ch[x][0]];
		if (ch[x][1]) size[x]+=size[ch[x][1]];
	}
}
inline void rotate(int x){
	int old=f[x],oldf=f[old],whichx=get(x);
	ch[old][whichx]=ch[x][whichx^1]; f[ch[old][whichx]]=old;
	ch[x][whichx^1]=old; f[old]=x;
	f[x]=oldf;
	if (oldf)
		ch[oldf][ch[oldf][1]==old]=x;
	update(old); update(x);
}
inline void splay(int x){
	for (int fa;fa=f[x];rotate(x))
	  if (f[fa])
	    rotate((get(x)==get(fa))?fa:x);
	root=x;
}
inline void insert(int x){
	if (root==0){sz++; ch[sz][0]=ch[sz][1]=f[sz]=0; root=sz; size[sz]=cnt[sz]=1; key[sz]=x; return;}
	int now=root,fa=0;
	while(1){
		if (x==key[now]){
			cnt[now]++; update(now); update(fa); splay(now); break;
		}
		fa=now;
		now=ch[now][key[now]<x];
		if (now==0){
			sz++;
			ch[sz][0]=ch[sz][1]=0;
			f[sz]=fa;
			size[sz]=cnt[sz]=1;
			ch[fa][key[fa]<x]=sz;
			key[sz]=x;
			update(fa);
			splay(sz);
			break;
		}
	}
}
inline int find(int x){
	int now=root,ans=0;
	while(1){
		if (x<key[now])
		  now=ch[now][0];
		else{
			ans+=(ch[now][0]?size[ch[now][0]]:0);
			if (x==key[now]){
				splay(now); return ans+1;
			}
			ans+=cnt[now];
			now=ch[now][1];
		}
	}
}
inline int findx(int x){
	int now=root;
	while(1){
		if (ch[now][0]&&x<=size[ch[now][0]])
		  now=ch[now][0];
		else{
			int temp=(ch[now][0]?size[ch[now][0]]:0)+cnt[now];
			if (x<=temp) return key[now];
			x-=temp; now=ch[now][1];
		}
	}
}
inline int pre(){
	int now=ch[root][0];
	while (ch[now][1]) now=ch[now][1];
	return now;
}
inline int next(){
	int now=ch[root][1];
	while (ch[now][0]) now=ch[now][0];
	return now;
}
inline void del(int x){
	int whatever=find(x);
	if (cnt[root]>1){cnt[root]--; update(root); return;}
	if (!ch[root][0]&&!ch[root][1]) {clear(root); root=0; return;}
	if (!ch[root][0]){
		int oldroot=root; root=ch[root][1]; f[root]=0; clear(oldroot); return;
	}
	else if (!ch[root][1]){
		int oldroot=root; root=ch[root][0]; f[root]=0; clear(oldroot); return;
	}
	int leftbig=pre(),oldroot=root;
	splay(leftbig);
	ch[root][1]=ch[oldroot][1];
	f[ch[oldroot][1]]=root;
	clear(oldroot);
	update(root); 
}
int main(){
	int n,opt,x;
	scanf("%d",&n);
	for (int i=1;i<=n;++i){
		scanf("%d%d",&opt,&x);
		switch(opt){
			case 1: insert(x); break;
			case 2: del(x); break;
			case 3: printf("%d\n",find(x)); break;
			case 4: printf("%d\n",findx(x)); break;
			case 5: insert(x); printf("%d\n",key[pre()]); del(x); break;
			case 6: insert(x); printf("%d\n",key[next()]); del(x); break;
		}
	}
}



题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值