acm算法有用吗?写给自己。

      acm算法有用吗?写给自己,也希望能帮助那些大一迷茫的人。


我是一个普通二本院校即将进入大三的acmer,一般问这个问题的人都是一个acmer的失败者,因为成功的人都去忙着学习该学习的算法了,不会问这个问题,看到这个问题也会一笑而过。



     我在大二的下学期拿到了省赛的铜牌,说实话这个奖牌的含金量很水,或者说根本不带含金量。我有一个学长,拿过省赛金牌,区域赛铜牌的学长,他的一番话,让我对acm产生了怀疑,不是我怀疑算法没有用,因为好多老师说过,大牛也说过程序就是算法+数据结构。但是学长告诉我,他在北京的遭遇,就是一个底层打杂的,我有些想不通,一个省赛金牌的获得者,可以直接不用面试笔试去浪潮工作的人在北京工作只是一个打杂的,是不是有点不可思议。我感觉很不可思议,对,这根本就对不起这个奖牌,他告诉我他学的算法根本用不到,而且他没有项目的工作经验,在小企业没有任何优势,甚至还有劣势。进大公司没有门路,他说因为二本院校的牌子,他没法去面试或者笔试,但是我想这个学长可能有点内向,也许会错失一些机会。他选择考研985,争取进大公司。但是我想了想,还是很有意思的。还有一些学长因为有了acm的经历,得了一些奖项,考研的面试和复试中如鱼得水。



       现在,我想说的是如果不想考研的话,学那么一点acm是根本没用的,我在网络上看到的和学长所说的,小公司是根本用不到算法,大公司也不需要算法一般般的人,算法大牛在那里都很受欢迎,也很吃香,但是这是一个枯燥的过程,真的,高中的时候很多人的梦想就是脱离数学,算法大牛的数学棒的你不敢想象。不过acm中的一些数据结构还是可以看看的。开始我总以为自己学了算法就会很厉害,看到大牛的事迹,年薪多少多少,对自己的未来充满了憧憬。对,没错,这些全都是异想天开,水平和大牛没法比,大多数时间都是闷头死磕,摸着石头过河,和那些有指明灯的人有区别,更何况自己根本不如别人努力,甚至在颓废。



不说别人怎么样,就说下自己,我并不因为自己的学校羞耻,相反我为他而骄傲。但是,并不是为他的所有而骄傲,他给了我良好的学习环境,老师也认真的交给我们知识。我非常的骄傲。但是我并不认为我会超越985,211的同学,首先,我们并没有站在同一起跑线上,他们的起点比我们高,而且比我们努力的不止一点半点。我有个同学在兰州大学,这是我们班学习最好的同学,大学时光我每天都睡得自然醒,而且我认为我在班里算是比较努力的同学了,毕竟上学期班级第二,但是我同学告诉我,他们经常是通宵学习,又一次整个宿舍连通了三宵。不管怎样我做不到,更不用说整个宿舍,我们整个学校又有几个同学能做到经常学习通宵,甚至连通三宵。我也不喜欢通宵,也不会通宵,但是900场的三国杀,400多场lol又浪费了多少的大学时光。我曾经以为我每天学到9点30,我是一个努力的不行不行的人,坚持了整整一学期,感觉自己好棒。



       说实话不是我不懂谦虚,而是没见过世面,不懂得行情,自己的想法总是从自己已经得知的知识做出的判断,我只知道我毕业会很吃香,我学过算法会很厉害,是我进小公司是比其他同学容易很多,但是对我的算法学习并不会有任何的利用,我以为毕业了立马月薪上万会混的很不得了,但我只会是一个高级点的打杂搬砖人员,月薪上万也只是在北京的行情如此。如果这样下去,我肯定不如我的学长,因为学习他比我努力也比我认真,我有点优势就是,我得到的经验和书籍比他多,学习上也会更省力气。所以我要努力一把acm比赛。在这个行业最重要的是实力,从自己平时的感觉也能知道,行业很尊重大牛。不在意什么牌子的学校,看得是本身实力,经历过acm并不代表就是acm的高手,菜鸟只会比没经历过的好一点,如果在小公司还不如那些平时把时间拿出来做项目的人员。

时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)   排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排  序,外部排序)   数论(整除,集合论,关系,素数,进位制,辗转相除,扩展的辗转相除,同余运算,解线性同余方程,中国剩余定理) 指针(链表,搜索判重,邻接表,开散列,二叉树的表示,多叉树的表示) 按位运算(and,or,xor,shl,shr,一些应用) 图论(图论模型的建立,平面图,欧拉公式与五色定理,求强连通分量,求割点和桥,欧拉回路,AOV问题,AOE问题,最小生成树的三种算法,最短路的三种算法,标号法,差分约束系统,验证二分图,Konig定理,匈牙利算法,KM算法,稳定婚姻系统,最大流算法,最小割最大流定理,最小费用最大流算法) 计算几何(平面解几及其应用,向量,点积及其应用,叉积及其应用,半平面相交,求点集的凸包,最近点对问题,凸多边形的交,离散化与扫描) 数据结构(广度优先搜索,验证括号匹配,表达式计算,递归的编译,Hash表,分段Hash,并查集,Tarjan算法,二叉堆,左偏树,二斜堆,二项堆,二叉查找树,红黑树,AVL平衡树,Treap,Splay,静态二叉查找树,2-d树,线段树,二维线段树,矩形树,Trie树,块状链表) 组合数学(排列与组合,鸽笼原理,容斥原理,递推,Fibonacci数列,Catalan数列,Stirling数,差分序列,生成函数,置换,Polya原理) 概率论(简单概率,条件概率,Bayes定理,期望值) 矩阵(矩阵的概念和运算,二分求解线性递推方程,多米诺骨牌棋盘覆盖方案数,高斯消元) 字符串处理(KMP,后缀树,有限状态自动机,Huffman编码,简单密码学) 动态规划(单调队列,凸完全单调性,树型动规,多叉转二叉,状态压缩类动规,四边形不等式) 博奕论(Nim取子游戏,博弈树,Shannon开关游戏) 搜索(A*,ID,IDA*,随机调整,遗传算法
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值