在单元 (unimodal) 目标变量的线性模型中,MLE (Maximum likelihood) 和 Least Squares (最小二乘法) 是常用的两种估计模型参数向量 W 的解法。他们都有个共同点,求解得到的参数向量 W 能够保证估计的目标值和观测得到的目标值之间的误差最小。但是单纯的考虑误差最小化得到的模型会有过拟合现象,也就是预测效果会很差。为了解决这个问题,在目标函数中往往都会考虑加入正则项。这篇博文正是为了记录哪些正则是比较常用的,以及他们所能达到的效果。以最小二乘误差函数为例,观测值 t 由两部分组成,真实值和随机误差项:
由于照成实验误差的因素会很多,通常会假设这些误差会线性叠加而成,这样跟据中心极限定理,随机误差项会服从正太分布。在没加入正则项之前目标函数可以表示为,其实是N个服从独立同分布假设的样本的似然函数。
通过MLE,我们可以得到回归模型权重参数 W 的最小二乘解 或者 通过不同的在线学习算法 (Sequential Learning 如