正则化的最小二乘法

本文介绍了最小二乘法在处理线性模型时可能出现的过拟合问题,并探讨了如何通过引入正则项来解决这一问题。常见的正则项包括二次正则项(权重衰减)、L1正则项(lasso),它们在统计学中分别对应于参数收缩。正则化不仅有助于防止过拟合,还可以学习到稀疏模型。不同类型的正则项对应不同的效果,例如L1正则项能产生稀疏权重矩阵。文章还提到了正则化的其他形式,如深度学习中的dropout技术。
摘要由CSDN通过智能技术生成

在单元 (unimodal) 目标变量的线性模型中,MLE (Maximum likelihood) 和 Least Squares (最小二乘法) 是常用的两种估计模型参数向量 W 的解法。他们都有个共同点,求解得到的参数向量 W 能够保证估计的目标值和观测得到的目标值之间的误差最小。但是单纯的考虑误差最小化得到的模型会有过拟合现象,也就是预测效果会很差。为了解决这个问题,在目标函数中往往都会考虑加入正则项。这篇博文正是为了记录哪些正则是比较常用的,以及他们所能达到的效果。以最小二乘误差函数为例,观测值 t 由两部分组成,真实值和随机误差项:


由于照成实验误差的因素会很多,通常会假设这些误差会线性叠加而成,这样跟据中心极限定理,随机误差项会服从正太分布。在没加入正则项之前目标函数可以表示为,其实是N个服从独立同分布假设的样本的似然函数。


通过MLE,我们可以得到回归模型权重参数 W 的最小二乘解 或者 通过不同的在线学习算法 (Sequential Learning 如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值