车辆检测“Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model”

翻译 2015年11月18日 16:40:12

sczhu课题组的文章:
http://www.stat.ucla.edu/~boli/projects/context_occlusion/context_occlusion.html

主要思路
And-Or模型结合上下文及遮挡信息用于车辆检测,And-Or模型在三个层次上描述car-to-car上下文及遮挡信息,(1)N个car之间的空间布局,(2)单个car不同的遮挡结构,(3)part。
学习过程包含两步,首先学习And-Or模型的结构,设计为无回路有向图(directed and acyclic graph)。然后使用Weak Label Structural SVM学习模型参数,在KITTI,Street Parking dataset,Pascal VOC上进行测试。

And-Or车辆检测结构
下图是车辆检测的And-Or模型,包含3种节点,And节点表示分解,Or节点表示structural variations,Terminal节点grounding symbols to image data.

这里写图片描述

(1)根Or节点表示N-car结构,包含车辆视图及car-to-car上下文信息,之后使用And节点表示N-car结构,上下文信息反应N-car在场景中的布局。
(2)N-car结构使用And节点表示,分解为N个车辆,由于车辆具有不同的视图及遮挡方式组合,将每个车辆使用一个Or节点表示。
(3)每个遮挡的模式使用And节点表示,并将被分解为parts,part可用3D CAD仿真或者DPM学习。

And-Or模型及其评分函数
1.And-Or模型
本文的And-Or模型有五层,使用3元组表示G=V,E,Θ,其中V表示节点,E表示边,Θ=(Θapp,Θdef,Θbias)分别是表示app,def和bias的参数。

2.评分函数
Terminal节点:
给定父节点A,terminal节点使用四元组表示(θappt,st,at|A,θdeft|A),其中θappt是appearance模板,s是尺度,a定义了锚点位置,θdeft|A是deformation参数,节点t的得分函数是:
这里写图片描述

And节点将N-car分解为单个car,或单个car分解为part,单个car的And节点可认为是DPM,得分是:
这里写图片描述

N-car 的And节点的子节点是Or节点,Or节点表示不同的结构变化,对于根Or节点,得分是:
这里写图片描述
对于i-th car Or节点,给定pA位置N-car And节点A,得分是:
这里写图片描述

DP算法检测
1.depth-first-search,自下往上计算所有节点appearance和deformation得分图
2.自上往下过程,寻找所有根节点得分满足score(O,p)>=t的位置

通过挖掘Context及Occlusion模式学习模型参数
使用D+=(I1,B1),...,(In,Bn)表示正样本集,B是图像I中bbox,从D+中生成N-car正样本,即:
这里写图片描述

1.挖掘上下文信息
使用相对位置描述N-car的布局,(cx,cy)表示bbox的中心,布局特征为:
这里写图片描述
使用k-means对布局特征进行聚类获取T个聚类中心,聚类中心用来定义Layer 1层的And节点,KITTI及Parking Lot数据库的D+2car聚类可视化如下,不同的颜色标识了特定的2-car上下文模式:
这里写图片描述

2.挖掘遮挡模式
对于D+1car与其他车辆无遮挡的情况,使用DPM定义Layer 3和4的节点:(1)对D+1car的bbox的长宽比聚类,训练初始的appearance模板(2)定义Terminal节点。
主要对D+2car挖掘遮挡信息,下图显示了KITTI及Parking Lot数据库的遮挡率:
这里写图片描述
遮挡建模的方法使用参考文献【19】。

实验结果
这里写图片描述

这里写图片描述

相关文章推荐

R-CNN论文笔记《Rich feature hierarchical for accurate object detection and semantic segmentation》

R-CNN 论文学习笔记

手把手建立Simulink四分之一车辆模型/Building a quarter car model step by step!

----------------------------------------------------------------------------------------------------...
  • kuvinxu
  • kuvinxu
  • 2011年10月27日 14:56
  • 2242

显著性检测总结之Exploiting Local and Global Patch Rarities for Saliency Detection

1.Ali Borji, Laurent Itti, Exploiting Local and Global Patch Rarities for Saliency Detection, CVPR20...

目标检测 R-CNN 论文笔记(Rich feature hierarchies for accurate object detection and semantic segmentation)

目标识别与检测数据库:PASCAL VOC在12年以前一直进展缓慢,一些新提出的优化方法只是把之前的方法线性地结合在一起。Ross Girshick提出的R-CNN直接将识别准确率提高了30%。作者主...
  • Cyiano
  • Cyiano
  • 2017年04月10日 15:48
  • 882

Contour Detection and Hierarchical Image Segmentation 源码编译运行

找了很久,终于找到了这一篇好的图像分割方法,还有一篇2013年CVPR 的Sketch Tokens,根据它提供的召回率曲线图的对比,能看出它们的分割效果基本一样,但没有具体对这两篇的比较。下面是我对...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:车辆检测“Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model”
举报原因:
原因补充:

(最多只允许输入30个字)