车辆检测“Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model”

翻译 2015年11月18日 16:40:12

sczhu课题组的文章:
http://www.stat.ucla.edu/~boli/projects/context_occlusion/context_occlusion.html

主要思路
And-Or模型结合上下文及遮挡信息用于车辆检测,And-Or模型在三个层次上描述car-to-car上下文及遮挡信息,(1)N个car之间的空间布局,(2)单个car不同的遮挡结构,(3)part。
学习过程包含两步,首先学习And-Or模型的结构,设计为无回路有向图(directed and acyclic graph)。然后使用Weak Label Structural SVM学习模型参数,在KITTI,Street Parking dataset,Pascal VOC上进行测试。

And-Or车辆检测结构
下图是车辆检测的And-Or模型,包含3种节点,And节点表示分解,Or节点表示structural variations,Terminal节点grounding symbols to image data.

这里写图片描述

(1)根Or节点表示N-car结构,包含车辆视图及car-to-car上下文信息,之后使用And节点表示N-car结构,上下文信息反应N-car在场景中的布局。
(2)N-car结构使用And节点表示,分解为N个车辆,由于车辆具有不同的视图及遮挡方式组合,将每个车辆使用一个Or节点表示。
(3)每个遮挡的模式使用And节点表示,并将被分解为parts,part可用3D CAD仿真或者DPM学习。

And-Or模型及其评分函数
1.And-Or模型
本文的And-Or模型有五层,使用3元组表示G=V,E,Θ,其中V表示节点,E表示边,Θ=(Θapp,Θdef,Θbias)分别是表示app,def和bias的参数。

2.评分函数
Terminal节点:
给定父节点A,terminal节点使用四元组表示(θappt,st,at|A,θdeft|A),其中θappt是appearance模板,s是尺度,a定义了锚点位置,θdeft|A是deformation参数,节点t的得分函数是:
这里写图片描述

And节点将N-car分解为单个car,或单个car分解为part,单个car的And节点可认为是DPM,得分是:
这里写图片描述

N-car 的And节点的子节点是Or节点,Or节点表示不同的结构变化,对于根Or节点,得分是:
这里写图片描述
对于i-th car Or节点,给定pA位置N-car And节点A,得分是:
这里写图片描述

DP算法检测
1.depth-first-search,自下往上计算所有节点appearance和deformation得分图
2.自上往下过程,寻找所有根节点得分满足score(O,p)>=t的位置

通过挖掘Context及Occlusion模式学习模型参数
使用D+=(I1,B1),...,(In,Bn)表示正样本集,B是图像I中bbox,从D+中生成N-car正样本,即:
这里写图片描述

1.挖掘上下文信息
使用相对位置描述N-car的布局,(cx,cy)表示bbox的中心,布局特征为:
这里写图片描述
使用k-means对布局特征进行聚类获取T个聚类中心,聚类中心用来定义Layer 1层的And节点,KITTI及Parking Lot数据库的D+2car聚类可视化如下,不同的颜色标识了特定的2-car上下文模式:
这里写图片描述

2.挖掘遮挡模式
对于D+1car与其他车辆无遮挡的情况,使用DPM定义Layer 3和4的节点:(1)对D+1car的bbox的长宽比聚类,训练初始的appearance模板(2)定义Terminal节点。
主要对D+2car挖掘遮挡信息,下图显示了KITTI及Parking Lot数据库的遮挡率:
这里写图片描述
遮挡建模的方法使用参考文献【19】。

实验结果
这里写图片描述

这里写图片描述

Autonomous driving application - Car+detection - v1

Autonomous driving - Car detectionWelcome to your week 3 programming assignment. You will learn abou...
  • qq_29300341
  • qq_29300341
  • 2017年11月23日 12:19
  • 3348

Haar+Adaboost 车辆检测 目标检测(视频车辆检测算法代码)

正样本:http://download.csdn.net/detail/zhuangxiaobin/7326197 负样本:http://download.csdn.net/detail/zhu...
  • lhbbzh
  • lhbbzh
  • 2015年01月02日 22:18
  • 2787

HOG SVM 车辆检测

HOG SVM 车辆检测   近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的...
  • baobei0112
  • baobei0112
  • 2016年01月29日 11:24
  • 3412

【图像处理】Haar Adaboost 检测自定义目标(视频车辆检测算法代码)

opencv自带了一个人脸识别用到的分类器,我们直接使用就行了。但是很多人想到要跟踪其他东西,例如说,手,杯子,篮球,汽车,那怎么办?其实很简单,只要按照一下步骤一步一步做,很容易就可以做到了。用的是...
  • zhuangxiaobin
  • zhuangxiaobin
  • 2014年05月10日 14:00
  • 21101

TensorFlow实现简单的车辆检测

使用TensorFlow实现简单的车辆检测效果
  • u014484783
  • u014484783
  • 2017年11月29日 13:50
  • 707

Haar Adaboost 检测自定义目标(视频车辆检测算法代码)

阅读须知 本博客涉及到的资源: 正样本:http://download.csdn.net/detail/zhuangxiaobin/7326197 负样本:http://downlo...
  • zzq060143
  • zzq060143
  • 2016年12月29日 21:51
  • 853

Haar Adaboost 视频车辆检测代码和样本

Haar Adaboost 视频车辆检测代码和样本
  • jacke121
  • jacke121
  • 2017年11月13日 22:51
  • 185

【opencv】车辆检测1——样本剪裁

车辆检测需要分为三个部分: 1.样本准备 2.训练样本 3.检测 本文先做第一部分。学习了多篇博客,分为两步骤: 1.需将图片格式转换为bmp,这个使用网上的图片转换器即可; 2.需将正样...
  • wuji2906
  • wuji2906
  • 2017年02月23日 18:41
  • 207

车辆检测 HOG+SVM

HOG SVM 车辆检测   近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不...
  • wintergeng
  • wintergeng
  • 2017年01月11日 14:21
  • 608

车辆检测

车辆检测,在320*240的图片,用时9毫米,有需要的可以联系我,QQ308477984
  • hnsdgxylh
  • hnsdgxylh
  • 2016年04月15日 15:27
  • 960
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:车辆检测“Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model”
举报原因:
原因补充:

(最多只允许输入30个字)