基于opencv的摄像机标定

博客详细介绍了基于opencv的摄像机标定原理和步骤,强调了标定过程中相机内参矩阵的构建,特别是焦距f的重要性。同时,指出了在后续程序中使用校正矩阵时的数据类型匹配问题,以避免计算错误。
摘要由CSDN通过智能技术生成

原理简述:

三维世界中的点的位置与其对应的二维投影,遵从以下公式: 

这里写图片描述 
其中, 
M表示三维世界中的点; 
[R|T]表示欧氏变换,是一个3*4矩阵 
A表示相机参数矩阵,存放相机内部参数 
P表示M在二维空间的投影,是一个二维点(文献1)

相机成像投影图如下所示(文献2)

这里写图片描述

摄像机标定的过程就是找到相机内参,即:矩阵A

A通常为:

|afsx|

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值