C# 绘图中的图片闪烁问题解决方法的使用结果

我编写的是Windows应用程序

用 OnPaint 进行实时绘图的

protected override void OnPaint(PaintEventArgs e)

{

        base.OnPaint(e);
        Graphics dc = e.Graphics;
        //以下是绘图内容

}

由于每秒需要重绘一次图片,所以出现严重的闪烁问题。

 

主要有3中解决方法

1. 将Form的DoubleBuffered属性设置为true。

改变这个属性后,重绘闪烁问题依然存在。

 

2. 在构造函数中增加改变控件属性的代码

public From1_From()
{
        InitializeComponent();

   
        // 修改属性代码

        SetStyle(ControlStyles.UserPaint, true);
        SetStyle(ControlStyles.AllPaintingInWmPaint, true); // 禁止擦除背景.
        SetStyle(ControlStyles.DoubleBuffer, true); // 双缓冲
        this.UpdateStyles();
}

增加代码后,重绘闪烁问题依然存在。

 

3. 先将图形绘制到bitmap图片中,在加载这个图片

protected override void OnPaint(PaintEventArgs e)

{

        base.OnPaint(e);
        Graphics g = e.Graphics;

        //注意,这里千万不可用Graphics g = this.CreateGraphics() 获得绘图变量。否则闪烁将非常厉害。

        Bitmap b = new Bitmap(this.Width, this.Height);
        Graphics dc = Graphics.FromImage((System.Drawing.Image)b);

       

        //将要绘制的内容绘制到dc上

 

        g.DrawImage(b, 0, 0);
        dc.Dispose();

}

        使用这种方法后,重绘闪烁问题得到很好的解决,推荐使用这种方法。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值