深度神经网络可视化工具

原创 2017年08月31日 14:56:04

TensorBoard:TensorFlow集成可视化工具

GitHub官方项目:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tensorboard
TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。

为了更方便 TensorFlow 程序的理解、调试与优化,Google发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。

当 TensorBoard 设置完成后,它应该是这样子的:
这里写图片描述

输入下面的指令来启动tensorboard:

tensorboard --logdir=/path/to/log-directory

这里的参数 logdir 指向 SummaryWriter 序列化数据的存储路径。如果logdir目录的子目录中包含另一次运行时的数据,那么 TensorBoard 会展示所有运行的数据。一旦 TensorBoard 开始运行,你可以通过在浏览器中输入 localhost:6006 来查看 TensorBoard。进入 TensorBoard 的界面时,你会在右上角看到导航选项卡,每一个选项卡将展现一组可视化的序列化数据集 。对于你查看的每一个选项卡,如果 TensorBoard 中没有数据与这个选项卡相关的话,则会显示一条提示信息指示你如何序列化相关数据。

TensorFlow 图表计算强大而又复杂,图表可视化在理解和调试时显得非常有帮助。 下面是一个运作时的可式化例子:
这里写图片描述
更多详细内容参考:
[TensorFlow中文社区] TensorBoard:可视化学习
[TensorFlow中文社区] TensorBoard:图表可视化
[极客学院] TensorBoard:可视化学习

Netscope:支持Caffe的神经网络结构在线可视化工具

官网:http://ethereon.github.io/netscope/quickstart.html
GitHub项目:https://github.com/ethereon/netscope

“A web-based tool for visualizing neural network architectures (or technically, any directed acyclic graph). It currently supports Caffe’s prototxt format.”

Netscope是一个支持prototxt格式描述的神经网络结构的在线可视工具。它可以用来可视化Caffe结构里prototxt格式的网络结构,使用起来也非常简单,打开这个地址 http://ethereon.github.io/netscope/#/editor,把你的描述神经网络结构的prototxt文件复制到该编辑框里,按shift+enter,就可以直接以图形方式显示网络的结构了。

比如,以 mnist的Lenet 和 imagenet的AlexNet 网络结构为例,分别把Caffe中 caffe/examples/mnist/lenet_train_test.prototxt 和 caffe/models/bvlc_alexnet/train_val.prototxt 文件的内容复制到左侧编译框,按shift+enter,立即就可以得到可视化的结构图,具体每层的参数等,如下:
这里写图片描述
这里写图片描述
Netscope给出的几个常见CNN网络结构示例:

AlexNet | Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton
CaffeNet | Yangqing Jia, Evan Shelhamer, et. al.
Fully Convolutional Network — Three Stream | Jonathan Long, Evan Shelhamer, Trevor Darrell
GoogleNet | Christian Szegedy, et. al.
Network in Network | Min Lin, Qiang Chen, Shuicheng Yan
VGG 16 Layers | Karen Simonyan, Andrew Zisserman
以上网络的prototxt源文件见:https://github.com/ethereon/netscope/tree/gh-pages/presets

使用 python/draw_net.py绘制网络模型

python/draw_net.py,这个文件,就是用来绘制网络模型的,也就是将网络模型由prototxt变成一张图片。

在绘制之前,需要先安装两个库

1.安装GraphViz

sudo apt-get install GraphViz

2.安装pydot

安装好了,就可以调用脚本来绘制图片了。

draw_net.py执行的时候带三个参数

第一个参数:网络模型的prototxt文件;
第二个参数:保存的图片路径及名字;
第二个参数:- - rankdir = x,x 有四种选项,分别是LR, RL, TB, BT 。用来表示网络的方向,分别是从左到右,从右到左,从上到小,从下到上。默认为LR。
例:绘制Lenet模型

sudo python python/draw_net.py examples/mnist/lenet_train_test.prototxt netImage/lenet.png --rankdir=BT

这里写图片描述

参考阅读:

Netscope:支持Caffe的神经网络结构在线可视化工具
Caffe学习系列(18): 绘制网络模型
Caffe学习系列——工具篇:神经网络模型结构可视化
深度网络的设计与可视化工具

Neural Network Playground

官网:http://playground.tensorflow.org
GitHub项目:https://github.com/tensorflow/playground
Deep playground is an interactive visualization of neural networks, written in typescript using d3.js.

PlayGround是一个图形化用于教学目的的简单神经网络在线演示、实验的平台,非常强大地可视化了神经网络的训练过程。
这里写图片描述

CNNVis

文章来源:Towards Better Analysis of Deep Convolutional Neural Networks arxiv.org/abs/1604.07043
具体参见:能帮你更好理解分析深度卷积神经网络,今天要解读的是一款新型可视化工具——CNNVis,看完就能用!

摘要: 深度卷积神经网络(CNNs)在许多模式识别任务中取得了很大的性能突破, 然而高质量深度模型的发展依赖于大量的尝试,这是由于没有很好的理解深度模型是怎么工作的,在本文中,提出了一个可视化分析系统CNNVis,帮助机器学习专家更好的理解、分析、设计深度卷积神经网络。
这里写图片描述
部分From:zhwhong

版权声明:本文为博主原创文章,未经博主允许不得转载 欢迎交流~

相关文章推荐

rcnn安装配置,完美解决caffe不兼容问题

之前因为之前博客先装caffe版本不能兼容rcnn,下载caffe v0.999版本也出现来编译不能通过的情况。 现在的解决办法还是使用caffe v0.999版本,之所以出现编译不过的问题。是因为...

Caffe学习(九)使用Nsight Eclipse调试py-faster-rcnn(C++/python混合代码调试)

实验目的由于py-faster-rcnn均采用的是python接口,但是在内部调用了caffe的C++共享库_caffe.so,若想要搞清楚数据在网络中的具体流向,就必须要能够联合调试python和C...

深度网络的设计与可视化工具

深度网络的设计与可视化工具 caffe Linux环境的准备 主要是根据 caffe install manual 来进行的。主要库的依赖可以用这个https://github....

MRtrix3-神经成像可视化工具

  • 2017年07月10日 17:05
  • 787KB
  • 下载

深度学习小白——卷积神经网络可视化(三)

此篇主要总结一下《Understanding Neural Networks Through Deep Visualization》这篇论文 如果我们想要观察神经网络中任意一个神经元到底对何种图片...

深度学习(二十七)可视化理解卷积神经网络-ECCV 2014

可视化理解卷积神经网络 原文地址:http://blog.csdn.net/hjimce/article/details/50544370 作者:hjimce 一、相关理论 本篇博文主要...

深度学习(二十七)可视化理解卷积神经网络

本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解的开山之作...
  • hjimce
  • hjimce
  • 2016年01月19日 19:30
  • 21509

深度学习小白——卷积神经网络可视化(二)

一、由卷积后的code得到原始图像 可以看出随着卷积网络的进行,越来越多的信息被扔掉了,能还原除的信息也就越少。 二、Deep Dream google发明的起初是用来看神经网络各层在“看”什...

深度学习小白——卷积神经网络可视化(一)

一、可视化最大激活神经元的一些pathces 例如在这个AlexNet的pool5层任选一个神经元,然后喂给它大量的图片,看哪种图片最能激活该神经元 比如上面两行代表使神经元激活值最大的一些图...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度神经网络可视化工具
举报原因:
原因补充:

(最多只允许输入30个字)