auc指标含义的理解

本文介绍了AUC的概念,强调ROC曲线上点靠近左上角表示分类器性能更优,并探讨了AUC的计算原理。AUC的值在0.5到1之间,表明分类器对正负样本的排序能力。文章还提到了处理得分相同样本的方法,并指出AUC不受样本分布变化的影响。同时,给出了ROC曲线的绘制方法和AUC计算的直观解释,涉及概率组合问题和梯形面积的计算。最后,文章附带了具体代码实现。
摘要由CSDN通过智能技术生成
机器学习实践中分类器常用的评价指标就是auc,不想搞懂,简单用的话,记住一句话就行
auc取值范围[0.5,1],越大表示越好,小于0.5的把结果取反就行。

想搞懂的,看An introduction to ROC analysis (Tom Fawcett)这篇论文把。我把这篇论文的要点整理了一下。

引子

假设有下面两个分类器,哪个好?

A类样本90个
B 类样本10个
分类精度(分类正确占比)
分类器C1结果
A* 90  (100%)
A*10 (0%)
90%
分类器C2结果
A*70 + B*20  (78 %)
A*5 + B*5    (50%)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值