机器学习实践中分类器常用的评价指标就是auc,不想搞懂,简单用的话,记住一句话就行
auc取值范围[0.5,1],越大表示越好,小于0.5的把结果取反就行。
想搞懂的,看An introduction to ROC analysis (Tom Fawcett)这篇论文把。我把这篇论文的要点整理了一下。
引子
假设有下面两个分类器,哪个好?
|
A类样本90个
|
B 类样本10个
|
分类精度(分类正确占比) |
分类器C1结果
|
A*
90 (100%)
|
A*10 (0%)
|
90%
|
分类器C2结果
|
A*70 + B*20
(78
%)
|
A*5 + B*5
(50%)
|