模型评估指标AUC(area under the curve)

AUC(Area Under the Curve)是ROC曲线下的面积,是衡量二分类模型性能的重要指标。通过混淆矩阵、ROC曲线及其计算,本文详细解释了AUC的含义及其在评估模型时的重要性。较高的AUC值表明模型区分正负样本的能力更强,且不受样本分布不平衡影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AUC在机器学习领域中是一种模型评估指标。根据维基百科的定义,AUC(area under the curve)是ROC曲线下的面积。所以,在理解AUC之前,要先了解ROC是什么。而ROC的计算又需要借助混淆矩阵,因此,我们先从混淆矩阵开始谈起。

混淆矩阵

假设,我们有一个任务:给定一些患者的样本,构建一个模型来预测肿瘤是不是恶性的。在这里,肿瘤要么良性,要么恶性,所以这是一个典型的二分类问题。

假设我们用y=1表示肿瘤是良性,y=0表示肿瘤是恶性。则我们可以制作如下图的表格:
这里写图片描述
如上图,TP表示预测为良性,而实际也是良性的样例数;
FN表示预测为恶性,而实际是良性的样例数;
FP表示预测为良性,而实际是恶性的样例数;
TN表示预测为恶性,而实际也是恶性的样例数;

所以,上面这四个数就形成了一个矩阵,称为混淆矩阵。

那么接下来,我们如何利用混淆矩阵来计算ROC呢?
首先我们需要定义下面两个变量:

FPR=FPF
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值