两因素方差分析

原创 2013年12月02日 17:39:37

1 两因素方差分析

  1. 引子
    • 考虑如下两个变量的关系, 不同的种子和不同的肥料之间的关系
    • 设有三种不同的种子A,B,C, 肥料有四种 1,2,3,4
    • 将农田分为很多小块, 分别采用不同的种子和肥料, 考虑亩产量
    • 农作物设为小麦
    • 计算每单位农田产小麦的颗粒数还是重量?
  2. 例- 火箭推进器和燃料问题

    一火箭采用4种燃料, 三种推进器做射程试验, 每种燃料与每种推进器的组合各发射两次, 得射程如下表所示

    燃料 / 推进器 B1 B2 B3
    A1 58.2 56.2 65.3
      52.6 41.2 60.8
    A2 49.1 54.1 51.6
      42.8 50.5 48.4
    A3 60.1 70.9 39.2
      58.3 73.2 40.7
    A4 75.8 58.2 48.7
      71.5 51.0 41.4
  3. 模型分析
    • 这里试验指标是射程, 推进器和燃料是因素, 分别有3, 4个水平
    • 这是一个双因素的试验
    • 试验的目的在于考察在各种因素的各个水平下射程有误显著的差别
  4. 理论模型
    • 设有两个因素 A,B 作用于试验的指标,
    • 因素A有 r 个水平 A1,,Ar ,
    • 因素 B 有 s 个水平, B1,,Bs .
    • 现对因素 A,B 的每对组合 (Ai,Bj) 进 行 t 次试验,所得的结果记为Xijk,i=1,,r,j=1,s,k=1,,t
    • 设 XijkN(μij,σ2) 各 Xijk 相互独立
    • σ2 为未知方差
  5. 理论分析
    • 设总体的全部平均值为 μ , 则 μ 的估计为
      X¯...=1rsti=1rj=1sk=1rXijk
    • 设因素 A 取第 i 个水平 Ai 时, 数据的均值为 μi , 则 μi 的估计为
      X¯i..=1rsj=1sk=1rXijk
    • 因素A 的第 i 个水平 μi 相对于总体均值 μ 的提升(可能为负值) 为 αi=μiμ 的估计为 XiX¯
  6. 理论分析续
    • 欲检验 因素 A 的各个水平之间是否有显著差异, 可以考虑
      SSA=i=1rst(XiX¯)2

      的大小, 作为度量标准

    • 另设 因素B取第 j 个水平时总体的均值为 μj , 提升为 βj=μjμ , 估计值为 X¯j=1rti=1rk=1tXijk
    • 欲检验 因素 B 的各个水平之间是否有显著差异, 可以考虑
      SSB=j=1srt(XjX¯)2

      的大小, 作为度量标准

  7. 理论分析之误差平方和
    • 记误差平方和
      SSE=i=1rj=1sk=1t(XijkX¯ij)2
    • 其中 X¯ij=1tk=1tXijk
    • 可以证明 SSE/(rs(t1)) 为方差 σ2 的无偏估计
  8. 检验统计量的构造
    • 利用单因素方差分析的思想, 可以考虑
      FA=SSA/(r1)SSE/(rs(t1))

      作为检验统计量

    • 可以证明当 αi=μiμ=0,i=1,,r 时, 有
      FAF(r1,rs(t1))
    • 关于因素B的效应可以类似处理
  9. 因素A和因素B之间有无交互作用
    • 设两者之间没有关系, 此时 μij 可以看做是在均值 μ 的基 础上有两次提升即 μ+(μiμ)+(μjμ)
    • 两者的差异 μij(μi+μjμ) 记为γij 称为因素 A的第 i 个水平和 因 素B 的 第j 个水平的交互效应
    • 在实际数据中, 往往两者的估计值并不安全相等, 就是说 X¯ij 和 X¯i+X¯jX¯的值有差异
  10. 检验交互作用统计量的构造
    • 考虑其差值的平方和作为两者是否有交互作用的度量,记
      SSAB=i=1rj=1st(X¯ijX¯i+X¯jX¯)2
    • 在假设 γij0, i=1,,r, j=1,,s 成立的条件下, 有
      SSABσ2χ2((r1)(s1))
    • 其中 (r1)(s1)=rst1(r1)(s1)[rs(t1)]
    • 将 σ2 用估计值 SSErs(t1) 代替,并将分子除以相应的自由度,得
      SSAB/(r1)(s1)SSE/rs(t1)F((r1)(s1),rs(t1))

2 两因素方差分析的R实现


  1. 四种不同的机床, 操作员有三位, 轮换进行了三件元件的制作, 制作时间共36个, 数据如下, 请问机器和操作员不同对元件制作有无显著的影响,另外机器和操作员之间有无交互效应

    ## 数据集的生成
    Y<-c(15,15,17,19,19,16,16,18,21,17,17,17,15,15,15,19,22,22,15,17,16,18,17,16,18,18,18,18,20,22,15,16,17,17,17,17)
    A<-gl(4,9,36)
    B<-gl(3,3,36)
    jiqi<-data.frame(Y,A,B)
    write.table(jiqi,file="data/jiqi.csv")
    
    ## 机器操作员数据的结构,输出前6行数据
      jiqi<-read.table("data/jiqi.csv")
      head(jiqi)
    
       Y A B
    1 15 1 1
    2 15 1 1
    3 17 1 1
    4 19 1 2
    5 19 1 2
    6 16 1 2
    

    data/jiqi.csv

  2. 两因素方差分析的代码
    jiqi$A<-as.factor(jiqi$A)
    jiqi$B<-as.factor(jiqi$B)
    
    jiqi.aov<-aov(Y~A+B+A:B,data=jiqi)
    summary(jiqi.aov)
    
                Df Sum Sq Mean Sq F value   Pr(>F)
    A            3   2.75   0.917   0.532 0.664528
    B            2  27.17  13.583   7.887 0.002330 **
    A:B          6  73.50  12.250   7.113 0.000192 ***
    Residuals   24  41.33   1.722
    ---
    Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    
    • 说明 Y~A+B+A:B 为模型,表示考虑主效应 A ,B 和交互效应 A:B 对响应变量 Y 的影响



SPSS——方差分析(Analysis of Variance, ANOVA)——多因素方差分析(无重复试验双因素)

简介当遇到两个因素同时影响结果的情况,需要检验是一个因素起作用,还是两个因素都起作用,或者两个因素的影响都不显著场景某公司某种茶饮料的调查分析数据统计了该茶饮料两种不同的包装(新设计的包装和旧的包装)...
  • liuyuan_jq
  • liuyuan_jq
  • 2016年08月21日 14:44
  • 6961

双因素方差分析SPSS实现流程

三位工人分别在四台不同机器上三天的日产量。假定数据来自方差相等的正态分布。问:1)工人之间的差异是否显著?2)机器之间的差异是否显著?3)交互作用是否显著?(α=0.05) 使用SPSS进行数据输入...
  • u012349302
  • u012349302
  • 2016年01月04日 20:39
  • 787

Excel在统计分析中的应用—第十章—方差分析-有重复双因素方差分析工具

“双因素方差分析(Double factor/two-way variance analysis) 有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互...
  • hpdlzu80100
  • hpdlzu80100
  • 2017年12月18日 16:14
  • 148

spss多因素方差分析

多因素方差分析 多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的...
  • blacklee123
  • blacklee123
  • 2014年01月13日 21:14
  • 2555

SPSS——方差分析(Analysis of Variance, ANOVA)——单因素方差分析

方差分析基本原理样本要求 独立性 各样本必须是相互独立的随机样本 样本含量尽可能相等或相差不大 可比性 样本均值不相同,可比较 正态性 样本的总体符合正态分布,偏态分布不适用于方差分析。 对...
  • liuyuan_jq
  • liuyuan_jq
  • 2016年07月18日 23:33
  • 11458

R语言之方差分析篇

当包含的因子是解释变量时,通常会从预测转向 级别差异的分析,即称作方差分析()...
  • lilanfeng1991
  • lilanfeng1991
  • 2014年06月14日 17:11
  • 24864

使用SAS实现单因素方差分析

在饲养鸡增肥的研究中,某研究所提出三种饲料配方:A1是以鱼粉为主的饲料,A2是以槐树粉为主的饲料,A3是以玉米粉为主的饲料。为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,...
  • xhlijinlong
  • xhlijinlong
  • 2017年11月22日 18:11
  • 151

R语言_方差分析

方差分析
  • Young_Gy
  • Young_Gy
  • 2015年08月26日 15:25
  • 2540

10.MATLAB方差分析

方差分析是英国统计学家R.A.Fisher在20世纪20年代提出的一种统计方法,它有着非常广泛的应用。在生产实践和科学研究中,经验要研究生产条件或实验条件的改变对产品的质量或产量的影响。如在农业生产中...
  • MATLAB_matlab
  • MATLAB_matlab
  • 2017年03月01日 08:55
  • 4197

SAS方差分析入门

from:http://blog.163.com/zzz216@yeah/blog/static/16255468420121762038399/
  • huangjing_whlg
  • huangjing_whlg
  • 2014年05月26日 15:02
  • 1518
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:两因素方差分析
举报原因:
原因补充:

(最多只允许输入30个字)