OpenCV,常用图像增强算法的实现

转载 2016年11月25日 13:49:40

原文地址 http://blog.csdn.net/kezunhai/article/details/41553097

好资料,没收了!!!

1、对数图像增强算法

      对数图像增强是图像增强的一种常见方法,其公式为: S = c log(r+1),其中c是常数(以下算法c=255/(log(256)),这样可以实现整个画面的亮度增大。

void LogEnhance(IplImage* img, IplImage* dst)
{
	// 由于oldPixel:[1,256],则可以先保存一个查找表
	uchar lut[256] ={0};

	double temp = 255/log(256);

	for ( int i =0; i<255; i++)
	{
		lut[i] = (uchar)(temp* log(i+1)+0.5);
	}

	for( int row =0; row <img->height; row++)
	{
		uchar *data = (uchar*)img->imageData+ row* img->widthStep;
		uchar *dstData = (uchar*)dst->imageData+ row* dst->widthStep;

		for ( int col = 0; col<img->width; col++)
		{
			for( int k=0; k<img->nChannels; k++)
			{
				uchar t1 = data[col*img->nChannels+k];				
				dstData[col*img->nChannels+k] = lut[t1];
			}
		}		
	}	
}
2、指数图像增强算法

      指数图像增强的表达为:S = cR^r,通过合理的选择c和r可以压缩灰度范围,算法以c=1.0/255.0, r=2实现。

void ExpEnhance(IplImage* img, IplImage* dst)
{
	// 由于oldPixel:[1,256],则可以先保存一个查找表
	uchar lut[256] ={0};

	double temp = 1.0/255.0;

	for ( int i =0; i<255; i++)
	{
		lut[i] = (uchar)(temp*i*i+0.5);
	}

	for( int row =0; row <img->height; row++)
	{
		uchar *data = (uchar*)img->imageData+ row* img->widthStep;
		uchar *dstData = (uchar*)dst->imageData+ row* dst->widthStep;

		for ( int col = 0; col<img->width; col++)
		{
			for( int k=0; k<img->nChannels; k++)
			{
				uchar t1 = data[col*img->nChannels+k];				
				dstData[col*img->nChannels+k] = lut[t1];
			}
		}		
	}	
}

3、加Masaic算法

        在日常中有时候保密或其他需要将图像马赛克,下面的算法实现图像马赛克功能(原理:用中心像素来表示邻域像素)。

uchar getPixel( IplImage* img, int row, int col, int k)
{
	return ((uchar*)img->imageData + row* img->widthStep)[col*img->nChannels +k];
}

void setPixel( IplImage* img, int row, int col, int k, uchar val)
{
	((uchar*)img->imageData + row* img->widthStep)[col*img->nChannels +k] = val;
}


// nSize:为尺寸大小,奇数
// 将邻域的值用中心像素的值替换
void Masic(IplImage* img, IplImage* dst, int nSize)
{
	int offset = (nSize-1)/2;
	for ( int row = offset; row <img->height - offset; row= row+offset)
	{
		for( int col= offset; col<img->width - offset; col = col+offset)
		{
			int val0 = getPixel(img, row, col, 0);
			int val1 = getPixel(img, row, col, 1);
			int val2 = getPixel(img, row, col, 2);
			for ( int m= -offset; m<offset; m++)
			{
				for ( int n=-offset; n<offset; n++)
				{
					setPixel(dst, row+m, col+n, 0, val0);
					setPixel(dst, row+m, col+n, 1, val1);
					setPixel(dst, row+m, col+n, 2, val2);
				}
			}
		}
	}
}

4、曝光过度问题处理

      对于曝光过度问题,可以通过计算当前图像的反相(255-image),然后取当前图像和反相图像的较小者为当前像素位置的值。

// 过度曝光原理:图像翻转,然后求原图与反图的最小值

<span style="font-size:12px;">void ExporeOver(IplImage* img, IplImage* dst)
{
	for( int row =0; row <img->height; row++)
	{
		uchar *data = (uchar*)img->imageData+ row* img->widthStep;
		uchar *dstData = (uchar*)dst->imageData+ row* dst->widthStep;
		for ( int col = 0; col<img->width; col++)
		{
			for( int k=0; k<img->nChannels; k++)
			{
				uchar t1 = data[col*img->nChannels+k];
				uchar t2 = 255 - t1;
				dstData[col*img->nChannels+k] = min(t1,t2);
			}
		}		
	}
}</span>

5、高反差保留

      高反差保留主要是将图像中颜色、明暗反差较大两部分的交界处保留下来,比如图像中有一个人和一块石头,那么石头的轮廓线和人的轮廓线以及面部、服装等有明显线条的地方会变被保留,儿其他大面积无明显明暗变化的地方则生成中灰色。其表达形式为:dst = r*(img - Blur(img))。

Mat HighPass(Mat img)
{
	Mat temp;
	GaussianBlur(img, temp,Size(7,7),1.6,1.6);

	int r=3;	
	Mat diff = img + r*(img-temp); //高反差保留算法
	return diff;
}

测试代码:

int main(int argc, char* argv[])
{
	const char* Path = "02.bmp";
	IplImage *img = cvLoadImage(Path,CV_LOAD_IMAGE_ANYCOLOR);
	IplImage *dst = cvCreateImage(cvGetSize(img), img->depth, img->nChannels);
	cout<<"输入你要选择的操作:"<<endl;
	cout<<"1、曝光过度"<<endl;
	cout<<"2、加马赛克"<<endl;
	cout<<"3、对数增强"<<endl;
	cout<<"4、指数增强"<<endl;
	cout<<"请输入你的选择:";
	int choice = 1;
	cin>>choice;
	switch (choice)
	{
	case 1: 
		ExporeOver(img, dst);   //这四个算法中总觉得某个算法有问题
		break;
	case 2: 
		Masic(img, dst, 21);
		break;
	case 3: 
		LogEnhance(img, dst);
		break;
	case 4:
		ExpEnhance(img, dst);
		break;
	default:
		cout<<"输入错误"<<endl;
		break;			  
	}
	cvSaveImage("dst.jpg",dst);
	cvNamedWindow("SRC",1);
	cvNamedWindow("DST", 1);
	cvShowImage("SRC", img);
	cvShowImage("DST", dst);
	cvWaitKey();
	return 0;
}


实现在MFC中效果如下(程序有点小问题,“高斯平滑”的效果应该是中值滤波):






OpenCV图像增强算法实现(直方图均衡化、拉普拉斯、Log、Gamma)

1. 基于直方图均衡化的图像增强 直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观视觉效果的目的。对比度较低的图像适合使用直方图均衡化方...
  • dcrmg
  • dcrmg
  • 2016年12月15日 23:46
  • 15116

OPENCV图像处理提高(一)图像增强

在图像处理学习中会涉及到直方图,直方图很好地表现了图像的灰度信息;同时我们注意到在暗图像中,直方图的分量集中在灰度级的低端;亮图像的灰度值集中在直方图灰度值的高端;低对比度的图像有较窄的直方图,并集中...
  • qq_25819827
  • qq_25819827
  • 2016年07月23日 21:56
  • 1929

Opencv 图像增强算法 图像检测结果

本code通过直方图变换增强了图像对比度,实现了单通道图像增强。将图像灰度阈值拉伸到0-255,图像检测结果见底部 Keywords: 图像增强 增强对比度 直方图变换 int ImageSt...
  • abcjennifer
  • abcjennifer
  • 2012年03月28日 10:58
  • 37404

OpenCV图像处理 空间域图像增强(图像锐化 1 基于拉普拉斯算子)

http://ggicci.blog.163.com/blog/static/210364096201262123236955/ OpenCVOpenCV 图像锐化拉普拉斯算子 ( Laplacia...
  • my88site
  • my88site
  • 2016年05月26日 21:16
  • 2307

OpenCV,马赛克 常用图像增强算法的实现

原文地址 http://blog.csdn.NET/kezunhai/article/details/41553097 好资料,没收了!!! 1、对数图像增强算法       对数图像增强是...
  • c2a2o2
  • c2a2o2
  • 2017年04月19日 22:10
  • 1046

OpenCv,局部自适应图像增强(Local Adaptive Contrast Enhancement)

一、理论          图像增强算法的基本原则是“降低低频区域,突出高频区域”,以此强化边缘,达到增强的目的。最简单的例子就是通过原始图像减去高斯模糊处理后的图像,就能够将边缘强化出来。     ...
  • EbowTang
  • EbowTang
  • 2015年01月03日 22:30
  • 2425

opencv中的图像亮度变换(图像增强)

#include using namespace cv; using namespace std; int imageAdjust(Mat &src, Mat &dst, do...
  • Gone_HuiLin
  • Gone_HuiLin
  • 2016年12月02日 13:43
  • 1529

ACE图像增强算法Opencv实现

1. 概述最近翻阅图像增强算法方面的文献,偶然中找到一篇博客是写的有关ACE图像增强算法的,算法的原理比较简单。本文章中使用到的基本计算方法也是从那篇文章中得到的,这里使用Opencv进行了简单的仿真...
  • m_buddy
  • m_buddy
  • 2016年11月27日 17:10
  • 1978

OpenCV图像增强——通过扩展灰度范围来增加对比度

OpenCV图像增强——通过扩展灰度范围来增加对比度
  • chenmohousuiyue
  • chenmohousuiyue
  • 2017年01月07日 10:19
  • 2487

OpenCV2.4.4中利用直方图均衡化增强图像对比度(Mat结构实现)

直方图就是对数据进行统计,将统计值组织到一系列事先定义好的bin(直方图中的柱子)中。bin中的数值是从数据中计算出的特征的统计量,这些数据可以是诸如梯度、方向、色彩或任何其他特征。无论如何,直方图获...
  • masikkk
  • masikkk
  • 2013年05月20日 19:44
  • 7486
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:OpenCV,常用图像增强算法的实现
举报原因:
原因补充:

(最多只允许输入30个字)