概述
在Markdown中输入数学公式需要LaTeX语法的支持。
基本语法
呈现位置
- 正文(inline)中的LaTeX公式用
$...$定义- 语句为
$\sum_{i=0}^N\int_{a}^{b}g(t,i)\text{d}t$ - 显示为 ∑ i = 0 N ∫ a b g ( t , i ) d t \sum_{i=0}^N\int_{a}^{b}g(t,i)\text{d}t ∑i=0N∫abg(t,i)dt
- 语句为
- 单独显示(display)的LaTeX公式用
$$...$$定义,此时公式居中并放大显示- 语句为
$$\sum_{i=0}^N\int_{a}^{b}g(t,i)\text{d}t$$ - 显示为
∑ i = 0 N ∫ a b g ( t , i ) d t \sum_{i=0}^N\int_{a}^{b}g(t,i)\text{d}t i=0∑N∫abg(t,i)dt
- 语句为
- 下列描述语句中若非特别指出均省略
$...$
希腊字母
| 显示 | 命令 | 显示 | 命令 |
|---|---|---|---|
| α | \alpha | β | \beta |
| γ | \gamma | δ | \delta |
| ε | \epsilon | ζ | \zeta |
| η | \eta | θ | \theta |
| ι | \iota | κ | \kappa |
| λ | \lambda | μ | \mu |
| ν | \nu | ξ | \xi |
| π | \pi | ρ | \rho |
| σ | \sigma | τ | \tau |
| υ | \upsilon | φ | \phi |
| χ | \chi | ψ | \psi |
| ω | \omega |
- 若需要大写希腊字母,将命令首字母大写即可。
\Gamma呈现为 Γ \Gamma Γ
- 若需要斜体希腊字母,将命令前加上
var前缀即可。\varGamma呈现为 Γ \varGamma Γ
字母修饰
上下标
- 上标:
^ - 下标:
_ - 举例:
C_n^2呈现为 C n 2 C_n^2 Cn2
矢量
\vec a呈现为 a ⃗ \vec a a\overrightarrow{xy}呈现为 x y → \overrightarrow{xy} xy
字体
- Typewriter:
\mathtt{A}呈现为 A \mathtt{A} A- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
- Blackboard Bold:
\mathbb{A}呈现为 A \mathbb{A} A- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
- Sans Serif:
\mathsf{A}呈现为 A \mathsf{A} A- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} ABCDEFGHIJKLMNOPQRSTUVWXYZ
分组
- 使用
{}将具有相同等级的内容扩入其中,成组处理 - 举例:
10^{10}呈现为 1 0 10 10^{10} 1010,而10^10呈现为 1 0 1 0 10^10 1010
括号
- 小括号:
()呈现为 ( ) () () - 中括号:
[]呈现为 [ ] [] [] - 尖括号:
\langle,\rangle呈现为 ⟨ ⟩ \langle\rangle ⟨⟩- 此处为与分组符号
{}相区别,使用转义字符\
- 此处为与分组符号
- 使用
\left(或\right)使符号大小与邻近的公式相适应;该语句适用于所有括号类型(\frac{x}{y})呈现为 ( x y ) (\frac{x}{y}) (yx)- 而
\left(\frac{x}{y}\right)呈现为 ( x y ) \left(\frac{x}{y}\right) (yx)
求和、极限与积分
- 求和:
\sum- 举例:
\sum_{i=1}^n{a_i}呈现为 ∑ i = 1 n a i \sum_{i=1}^n{a_i} ∑i=1nai
- 举例:
- 极限:
\lim_{x\to 0}呈现为 lim x → 0 \lim_{x\to 0} limx→0 - 积分:
\int- 举例:
\int_0^\infty{fxdx}呈现为 ∫ 0 ∞ f x d x \int_0^\infty{fxdx} ∫0∞fxdx
- 举例:
分式与根式
- 分式(fractions):
\frac{公式1}{公式2}呈现为 公 式 1 公 式 2 \frac{公式1}{公式2} 公式2公式1 - 根式:
\sqrt[x]{y}呈现为 y x \sqrt[x]{y} xy
特殊函数
\函数名- 举例:
\sin x,\ln x,\max(A,B,C)呈现为 sin x \sin x sinx, ln x \ln x lnx, max ( A , B , C ) \max(A,B,C) max(A,B,C)
特殊符号
| 显示 | 命令 |
|---|---|
| ∞ \infty ∞ | \infty |
| ∪ \cup ∪ | \cup |
| ∩ \cap ∩ | \cap |
| ⊂ \subset ⊂ | \subset |
| ⊆ \subseteq ⊆ | \subseteq |
| ⊃ \supset ⊃ | \supset |
| ∈ \in ∈ | \in |
| ∉ \notin ∈/ | \notin |
| ∅ \varnothing ∅ | \varnothing |
| ∀ \forall ∀ | \forall |
| ∃ \exists ∃ | \exists |
| ¬ \lnot ¬ | \lnot |
| ∇ \nabla ∇ | \nabla |
| ∂ \partial ∂ | \partial |
空格
- LaTeX语法本身会忽略空格的存在
- 小空格:
a\ b呈现为 a b a\ b a b - 4格空格:
a\quad b呈现为 a b a\quad b ab
矩阵
基本语法
- 起始标记
\begin{matrix},结束标记\end{matrix} - 每一行末尾标记
\\,行间元素之间以&分隔 - 举例
$$\begin{matrix}
1&0&0\\
0&1&0\\
0&0&1\\
\end{matrix}$$
呈现为
1
0
0
0
1
0
0
0
1
\begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&1\\ \end{matrix}
100010001
矩阵边框
- 在起始、结束标记处用下列词替换
matrixpmatrix:小括号边框bmatrix:中括号边框Bmatrix:大括号边框vmatrix:单竖线边框Vmatrix:双竖线边框
省略元素
- 横省略号:
\cdots - 竖省略号:
\vdots - 斜省略号:
\ddots - 举例
$$\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}$$
呈现为
[
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
]
\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix}
⎣⎢⎢⎢⎡a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎦⎥⎥⎥⎤
阵列
- 需要array环境:起始、结束处以
{array}声明 - 对齐方式:在
{array}后以{}逐行统一声明- 左对齐:
l;居中:c;右对齐:r - 竖直线:在声明对齐方式时,插入
|建立竖直线
- 左对齐:
- 插入水平线:
\hline - 举例
$$\begin{array}{c|lll}
{↓}&{a}&{b}&{c}\\
\hline
{R_1}&{c}&{b}&{a}\\
{R_2}&{b}&{c}&{c}\\
\end{array}$$
呈现为
↓
a
b
c
R
1
c
b
a
R
2
b
c
c
\begin{array}{c|lll} {↓}&{a}&{b}&{c}\\ \hline {R_1}&{c}&{b}&{a}\\ {R_2}&{b}&{c}&{c}\\ \end{array}
↓R1R2acbbbccac
方程组
- 需要cases环境:起始、结束处以
{cases}声明 - 举例
$$\begin{cases}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3\\
\end{cases}
$$
呈现为
{
a
1
x
+
b
1
y
+
c
1
z
=
d
1
a
2
x
+
b
2
y
+
c
2
z
=
d
2
a
3
x
+
b
3
y
+
c
3
z
=
d
3
\begin{cases} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3\\ \end{cases}
⎩⎪⎨⎪⎧a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

1360





