【XSY2469】graph 分治 并查集

题目大意

  给你一张 n 个点m条边的无向图,问删去每个点后,原图是不是二分图。

   n,m100000

题解

  一个图是二分图 该图不存在奇环

  可以用并查集,维护每个点到根的距离

  如果删除 x 点,就要把所有不与x连接的边加入并查集

  考虑分治,对于区间 [l,r] ,我们先把与 [l,mid] 链接且不与 [mid+1,r] 链接的边加入并查集,然后递归处理 [mid+1,r] 。另一边的情况类似。

  因为有撤销操作,所以要用按秩合并的并查集

  时间复杂度: O(mlogn)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
struct list
{
    int v[200010];
    int t[200010];
    int h[100010];
    int n;
    void clear()
    {
        memset(h,0,sizeof h);
        n=0;
    }
    void add(int x,int y)
    {
        n++;
        v[n]=y;
        t[n]=h[x];
        h[x]=n;
    }
};
list li;
int f[100010];
int s[100010];
int d[100010];
int find(int x)
{
    return f[x]==x?x:find(f[x]);
}
int getdist(int x)
{
    return f[x]==x?0:getdist(f[x])^d[x];
}
int e1[100010];
int e2[100010];
int top;
int ans[100010];
int merge(int x,int y)
{
    int dist=getdist(x)^getdist(y)^1;
    if((x=find(x))==(y=find(y)))
        return dist;
    top++;
    if(s[x]<=s[y])
    {
        e1[++top]=x;
        e2[top]=y;
        d[x]=dist;
        s[y]+=s[x];
        f[x]=y;
    }
    else
    {
        e1[++top]=y;
        e2[top]=x;
        d[y]=dist;
        s[x]+=s[y];
        f[y]=x;
    }
    return 0;
}
void solve(int l,int r)
{
    if(l==r)
    {
        ans[l]=1;
        return;
    }
    int mid=(l+r)>>1;
    int now=top;
    int i,j;
    int b=1;
    for(i=l;i<=mid&&b;i++)
        for(j=li.h[i];j&&b;j=li.t[j])
            if(li.v[j]<=mid||li.v[j]>r)
                b^=merge(i,li.v[j]);
    if(b)
        solve(mid+1,r);
    else
        for(i=mid+1;i<=r;i++)
            ans[i]=0;
    while(top>now)
    {
        f[e1[top]]=e1[top];
        s[e2[top]]-=s[e1[top]];
        top--;
    }
    now=top;
    b=1;
    for(i=mid+1;i<=r&&b;i++)
        for(j=li.h[i];j&&b;j=li.t[j])
            if(li.v[j]<l||li.v[j]>mid)
                b^=merge(i,li.v[j]);
    if(b)
        solve(l,mid);
    else
        for(i=l;i<=mid;i++)
            ans[i]=0;
    while(top>now)
    {
        f[e1[top]]=e1[top];
        s[e2[top]]-=s[e1[top]];
        top--;
    }
}
void solve()
{
    top=0;
    int n,m;
    scanf("%d%d",&n,&m);
    int i;
    int x,y;
    li.clear();
    for(i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        li.add(x,y);
        li.add(y,x);
    }
    for(i=1;i<=n;i++)
    {
        f[i]=i;
        s[i]=1;
    }
    solve(1,n);
    for(i=1;i<=n;i++)
        putchar(ans[i]+'0');
    putchar('\n');
}
int main()
{
//  freopen("c.in","r",stdin);
//  freopen("c.out","w",stdout);
    int t;
    scanf("%d",&t);
    while(t--)
        solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值