#!usr/bin/env python#-*- coding:utf-8 _*-"""
@author:fonttian
@file: Particle Swarm Optimization Basics.py
@time: 2017/10/15
"""# ----------------------Modules----------------------import operator
import random
import numpy
from deap import base
from deap import benchmarks
from deap import creator
from deap import tools
# ----------------------Representation----------------------# 最大化粒子# smin,smax 速度极限
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Particle", list, fitness=creator.FitnessMax, speed=list,
smin=None, smax=None, best=None)
# ----------------------Operators----------------------# 初始化一个随机的位置,一个随机的速度defgenerate(size, pmin, pmax, smin, smax):
part = creator.Particle(random.uniform(pmin, pmax) for _ in range(size))
part.speed = [random.uniform(smin, smax) for _ in range(size)]
part.smin = smin
part.smax = smax
return part
# 首先计算速度,然后限制速度,最后计算粒子位置defupdateParticle(part, best, phi1, phi2):
u1 = (random.uniform(0, phi1) for _ in range(len(part)))
u2 = (random.uniform(0, phi2) for _ in range(len(part)))
v_u1 = map(operator.mul, u1, map(operator.sub, part.best, part))
v_u2 = map(operator.mul, u2, map(operator.sub, best, part))
part.speed = list(map(operator.add, part.speed, map(operator.add, v_u1, v_u2)))
for i, speed in enumerate(part.speed):
if speed < part.smin:
part.speed[i] = part.smin
elif speed > part.smax:
part.speed[i] = part.smax
part[:] = list(map(operator.add, part, part.speed))
# The operators are registered in the toolbox with their parameters.# The particle value at the beginning are in the range [-100, 100] (pmin and pmax),# and the speed is limited in the range [-50, 50] through all the evolution.# The evaluation function h1() is from [Knoek2003].# The function is already defined in the benchmarks module, so we can register it directly.# def evaluate(individual):# return sum(individual),# size 种群大小# pmin,pmax 初始值范围# smin,smax 速度范围
toolbox = base.Toolbox()
toolbox.register("particle", generate, size=2, pmin=-6, pmax=6, smin=-3, smax=3)
toolbox.register("population", tools.initRepeat, list, toolbox.particle)
toolbox.register("update", updateParticle, phi1=2.0, phi2=2.0)
toolbox.register("evaluate", benchmarks.h1)
# toolbox.register("evaluate", evaluate)# ----------------------Algorithm----------------------defmain():
pop = toolbox.population(n=5)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
logbook = tools.Logbook()
logbook.header = ["gen", "evals"] + stats.fields
GEN = 1000
best = Nonefor g in range(GEN):
for part in pop:
print(part)
part.fitness.values = toolbox.evaluate(part)
ifnot part.best or part.best.fitness < part.fitness:
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values
ifnot best or best.fitness < part.fitness:
best = creator.Particle(part)
best.fitness.values = part.fitness.values
for part in pop:
toolbox.update(part, best)
# Gather all the fitnesses in one list and print the stats
logbook.record(gen=g, evals=len(pop), **stats.compile(pop))
print(logbook.stream)
return pop, logbook, best
if __name__ == "__main__":
pop, logbook, best = main()
print("最终族群 :",pop) # 没什么用# print("统计数据 :",logbook)
print("最佳种群 :",best)
print("最佳种群的适应度 :",benchmarks.h1(best))
# print("最佳个体的适应度 :",evaluate(best))