MVG读书笔记——射影变换的校正(零)

我们知道,射影变换使得图像失去了平行性等几何性质,只保留了点之间的共线性。一般情况下我们无法从变形后的图像获取这些几何信息,但是利用一些先验知识(比如直线间的正交关系、比例等),就可以从射影变换中恢复图像的几何信息。

这篇文章中我们先对射影变换H下直线和圆锥曲线的变换进行介绍,为使用先验知识恢复图像作准备。

直线的射影变换

对直线l进行射影变换得到l’,有

l=HTl

推导如下:

设x变换后得到x’,l变换后得到l’.则

lTx=0=lTH1Hx=lTH1x

lT=lTH1

圆锥曲线的射影变换

同样的,对圆锥曲线C进行射影变换得到C’,有

xTCx=xTHTCH1x

得到新的圆锥曲线 C=HTCH1

无穷远处直线

之前讲过,射影几何中对待无穷远处点和有限远处点的方法可以是一致的。同样的,对一个无穷远处的直线 l=[0,0,1]T ,在射影变换下可能会变成一条可见的直线。比如对某变换矩阵,假设它的转置逆矩阵

HT=123317501

则变换后得到的直线 l=[5,0,1] 。它是一个有限处的直线。

特别的,当H为仿射变换时,无穷远处图像仍为无穷远。

<think>嗯,用户想找多视图几何(MVG)相关的数据集下载。首先,我需要回忆一下常见的多视图几何数据集有哪些。多视图几何通常用于三维重建、立体视觉、SLAM等领域,所以相关的数据集应该包含多个视角的图像、相机参数、深度信息或者点云数据。 首先想到的是Middlebury数据集,他们提供了多视图立体匹配的标准数据集,比如2006和2014年的版本,里面应该有多视角图像和真实深度图。然后还有ETH3D,这个也是用于三维重建和立体匹配的高分辨率数据集,适合多视图几何算法测试。 接下来,Euroc MAV数据集,主要用于无人机和SLAM,但里面也有双目相机和IMU数据,可能对多视图几何有用。DTU Robot Dataset应该也不错,特别是用于多视图立体重建,有精确的相机参数和结构化光照扫描的真实数据。 还有TUM的RGB-D SLAM数据集,虽然主要是RGB-D数据,但也适用于多视图研究。KITTI自动驾驶数据集里的立体视觉和视觉里程计部分也可能相关。BlendedMVS和ScanNet这两个大型数据集,前者是合成数据适合训练,后者是真实室内场景的RGB-D数据。 然后,用户可能还需要知道这些数据集的具体内容和下载方式,比如Middlebury和ETH3D的官网,KITTI需要注册,BlendedMVC在GitHub上。要提醒用户注意数据集的许可协议和使用限制,特别是商业用途可能需要授权。 另外,用户提供的引用中有提到多视图几何中的深度融合、三视图稳定性以及物方点与视图的关联,所以推荐的数据集应该包含多视图、深度信息和3D点云,比如Middlebury、DTU和BlendedMVC这些会更符合需求。需要确认每个数据集是否包含相机参数、标定信息,这对多视图几何算法至关重要。 最后,生成相关问题时要考虑用户可能进一步的需求,比如如何处理这些数据集、算法实现、评估指标等。要确保回答结构清晰,分点列出数据集,每个数据集的信息和下载链接,以及注意事项,这样用户能方便地找到所需资源。</think>### 多视图几何(MVG)常用数据集及下载方式 多视图几何研究依赖于包含多视角图像、相机参数及三维真值的数据集。以下是经典和最新的公开数据集推荐: --- #### 1. **Middlebury Multi-View Stereo Dataset** - **内容**: 包含高精度多视角图像、相机标定参数、真实深度图和三维模型,适用于立体匹配与重建算法验证。 - **下载**: [Middlebury官网](https://vision.middlebury.edu/mview/) - **特点**: 提供不同光照和纹理场景,如“Temple”“Dino”等[^2]。 --- #### 2. **ETH3D Dataset** - **内容**: 高分辨率多视图图像、激光扫描点云和相机参数,支持多视图立体匹配和SLAM研究。 - **下载**: [ETH3D官网](https://www.eth3d.net/) - **特点**: 包含室内外场景,提供训练集和测试集[^1]。 --- #### 3. **DTU Robot Image Dataset** - **内容**: 超过100个场景的多视图图像,精确的相机姿态和结构化光照扫描的3D真值。 - **下载**: [DTU数据集页面](http://roboimagedata.compute.dtu.dk/) - **特点**: 适用于大规模三维重建算法评估[^3]。 --- #### 4. **KITTI Vision Benchmark Suite** - **内容**: 自动驾驶场景的双目图像、激光雷达点云和相机标定参数,支持多视图几何与SLAM。 - **下载**: [KITTI官网](http://www.cvlibs.net/datasets/kitti/)(需注册) - **特点**: 真实道路场景,包含动态物体干扰。 --- #### 5. **BlendedMVS Dataset** - **内容**: 大规模合成多视图数据集,覆盖多种物体和场景,包含深度图和3D模型。 - **下载**: [GitHub链接](https://github.com/YoYo000/BlendedMVS) - **特点**: 适合深度学习模型训练[^4]。 --- #### 6. **ScanNet Dataset** - **内容**: 真实室内场景的RGB-D视频序列,提供相机轨迹、3D网格和语义标注。 - **下载**: [ScanNet官网](https://www.scan-net.org/) - **特点**: 支持多模态研究(几何+语义)。 --- #### 注意事项 - **数据协议**: 部分数据集(如KITTI)需遵守非商业或学术使用协议。 - **预处理**: 下载后需检查相机参数对齐性(如焦距、畸变系数)[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值